Nuclear Magnetic Resonance on Oriented 194Ir ($T_{1/2} = 19.4$ h) in Fe and Ni

E. Hagn, H. Kleebauer, M. Zahn, and E. Zech
Physik-Department, Technische Universität München, Garching, Federal Republic of Germany

Received February 8, 1982

The hyperfine interaction of 194Ir ($J^e = 1^-$; $T_{1/2} = 19.4$ h) in Fe and Ni has been investigated with the technique of nuclear magnetic resonance on oriented nuclei. For both systems the electronic-orbital-momentum induced electric quadrupole splitting could be resolved. The magnetic and electric hyperfine splitting frequencies, $v_M = |g\mu_B B_{HF}/\hbar|$ and $v_Q = e^2 Q/\hbar$, respectively, were measured as: 194IrFe: $v_M = 408.54(23)$ MHz; $v_Q = -2.47(20)$ MHz; 194IrNi: $v_M = 135.24(5)$ MHz; $v_Q = -1.23(3)$ MHz. Taking into account a 3% uncertainty arising from hyperfine anomalies the g-factor is deduced as $|g| = 0.39(1)$. The electric quadrupole moment, $Q = +0.352(18)\text{b}$, is slightly smaller than expected from the known systematics of deformation parameters in this mass region.

1. Introduction

The 171Ir nuclei lie in a shape-transitional region between the strongly deformed rare-earth nuclei and the spherical nuclei near 208pb. In the neighbouring 76Pt nuclei a prolate-oblate phase transition occurs with increasing neutron number at $A \sim 188$, which has been established experimentally by the observation that the quadrupole moments of the first excited 2$^+$ states in the even-even Pt isotopes change sign. For the 76Os isotopes a similar transition was predicted to occur at $A \sim 192$ [1]. Recent measurements of quadrupole moments of the first excited 2$^+$ states in stable 186,188,190,192Os [2] and of the ground states of radioactive 183Os [3] and 191,193Os [4] showed no evidence for the existence of such a phase transition in the Os isotopes with $A \leq 193$. In this context a systematic investigation of the quadrupole moments of the Ir isotopes is of interest, especially in the neutron-rich region. The NMR-ON technique [5] allows a simultaneous determination of the nuclear g-factor and the electric quadrupole moment if the quadrupole-subresonances can be resolved. The resonance splitting is based on the fact that for high-Z impurities in ferromagnetic Fe and Ni a small electric field gradient (EFG) is present besides a large magnetic hyperfine field, which originates from the unquenched orbital momentum of the d-electrons at the impurity site. Especially for 5d Ir in Fe and Ni this effect is relatively large; it was first detected by conventional NMR on stable 191Ir and 193Ir in Fe and Ni [6, 7].

In NMR-ON experiments on 192IrFe and 192IrNi the subresonance structure could be well resolved [8], while for 186IrNi only an unresolved asymmetric resonance structure could be observed [9]. Here we report on NMR-ON measurements on 194IrFe and 194IrNi. With the Ni host the two quadrupole subresonances could be resolved well, thus allowing a precise determination of the ground state nuclear moments of 194Ir.

2. Principle of Measurement

The angular distribution of γ-rays emitted in the decay of oriented nuclei is most conveniently written as [10]

$$W(\Theta) = 1 + \sum_{k=2}^{k_{max}} A_k B_k (\mu B/k_B T) P_k (\cos \Theta) Q_k. \quad (1)$$

Here A_k are parameters which depend on the specific properties of the nuclear decay (spins, multipolarities, mixing ratios), they are products of the nor-
mally used angular correlation coefficients F_k and U_k, which, e.g., are tabulated in [11]. The B_k describe the degree of orientation; they depend on the magnetic hyperfine splitting μB and on the temperature T. The $P_k (\cos \Theta)$ are Legendre polynomials, Θ being the angle between the orientation axis (here the direction of the magnetic field) and the direction of observation, and Q_k are solid angle correction coefficients.

A simplified decay scheme of 194Ir is illustrated in Fig. 1. The 328 keV level is fed directly only by 9.2%. For the calculation of the A_k coefficients for the 328 keV transition the indirect feeding via higher levels (~4.8%) may not be neglected. Taking into account the side feeding via ~30 levels according to the decay scheme of [12] $A_2 (328) \sim -0.20$ is estimated. As the oriented state has $j=1$ only the $k=2$ component in (1) will be nonzero.

In NMR-ON experiments the low-temperature γ-anisotropy is used as detector for NMR. For the case of a combined magnetic dipole plus electric quadrupole interaction the resonance condition for transitions between state $|m\rangle$ and $|m+1\rangle$ is given by

$$v_{m\rightarrow m+1} = v_0 + A v_Q (m+1/2)$$

$$v_0 = v_M + |g \mu_N / h|(1 + K) \text{ sgn} (B_{HF}) B_0$$

$$v_M = |g \mu_N B_{HF} / h|$$

$$v_Q = e^2 q Q / h$$

$$A v_Q = 3 v_Q / (2j(2j-1)).$$

(2)

Here v_0 is the “pure” magnetic resonance, as expected in the absence of a quadrupole splitting, v_M and v_Q are the usually quoted magnetic dipole and electric quadrupole splittings, respectively, B_0 and B_{HF} are the external magnetic field and the hyperfine field, respectively, K is the Knight shift parameter, g is the nuclear g-factor, eq is the EFG, Q is the spectroscopic quadrupole moment, and $A v_Q$ is the quadrupole subresonance separation. It is obvious that a set of $2j$ subresonances exists, which are separated by $A v_Q$. In the present case two subresonances are expected which are separated by $A v_Q = 3 v_Q / 2$. For the following we will denote the subresonance which corresponds to rf-transitions between the energetically lowest sublevels as v_1-resonance and the second as v_2-resonance. (In the ultra-low temperature limit only the v_1-resonance can be observed.) Theoretical resonance amplitudes A_1, A_2 for realistic temperatures can be calculated as described in detail in [8]. The corresponding resonance spectra for $T = 10, 20,$ and $30 \mathrm{mK}$ are illustrated in Fig. 2. The following features are remarkable: The resonance “destruction” in the v_1-resonance can be larger than the γ-anisotropy itself. (Without quadrupole splitting the maximum resonance effect is given by the γ-anisotropy.) In the v_2-resonance the γ-anisotropy is always enhanced. Both effects facilitate the observation of NMR-ON resonances on systems for which the total γ-anisotropy is small.

3. Experimental Details

The samples were prepared by alloying of 193Ir (isotopic enrichment ~95%) with highly pure Fe