A 150 ms 10+ Isomer in 146Dy*

S.Z. Gui**, G. Colombo, and E. Nolte
Fachbereich Physik, Technische Universität München, Garching,
Federal Republic of Germany

Received January 25, 1982

In the course of systematic studies of very proton rich nuclei in the $N \approx 82$ region with Ni induced compound reactions, an unusually long-lived high spin isomer has been found. After in- and off-beam γ and conversion electron measurements, as γ excitation functions, $\gamma\gamma$ and $e\gamma$ coincidences, pulsed beam techniques and multi spectrum analyses of the residual activities, this isomer has been tentatively assigned to be a 10+ state in 146Dy, which decays into two 7− states by E3 transitions. The half-life of the isomer has been measured to be 150±20 ms. The isomer has been found to follow the β decay of the previously unknown 3.9 s isotope 146Ho. The mechanism of the appearance of such an isomer is discussed.

1. Introduction

58Ni projectiles of about 250 MeV from the postaccelerator [1, 2] of the Munich tandem give an unique opportunity to study very proton rich nuclei with neutron numbers close to $N = 82$. One of the even-even nuclei, furthest from stability in this region, is 146Dy which has two protons more and two neutrons less than 146Gd which shows nuclear properties almost like double magic nuclei (see e.g. [3, 4]). Such nuclei could have yrast traps or high spin isomers. With this possibility in mind, we performed series of studies on the yrast structure of 146Dy and the β decay of a possibly high spin isomer of 146Ho.

A high spin isomer with an unusually long half-life of 150 ms was identified. This isomer was also found to be populated in the β decay of a high spin isomer of 146Ho. In the following the experimental procedure, as well as the spin assignment and the interpretation of this isomer, will be described.

In parallel works we have investigated yrast states of the neutron deficient isotopes 148Er, 150Er and of neighbouring nuclei [5] and β decays of proton rich nuclei with $N \approx 82$ [6].

2. Experimental Set-Up

Enriched 90Zr (96.8%) and 91Zr (95.8%) targets were bombarded with 58Ni beams of 233 and 250 MeV from the Munich heavy-ion postaccelerator [1, 2] to study the nucleus 146Dy and neighbouring nuclei.

The final nuclei were studied with the following techniques:
- γ ray excitation functions
- $\gamma\gamma$ coincidences
- $e\gamma$ coincidences
- pulsed beam
- multi spectrum analyses of γ radiation and conversion electrons

The γ spectra were taken with a 180 cm3 coaxial Ge(Li) detector and a planar Ge(Li) detector (19 cm2 active area and 1.6 cm thick). Absorbers were used in front of the detectors: typically, 0.5 mm Cd and 0.5 mm Cu for the coaxial and 0.2 ... 0.5 mm Cu for the planar detector.
Multi spectrum analyses of γ radiation and conversion electrons were measured with a pulsed beam in the 100 ms and sec range. Deflection of the beam by magnetic steers was used to pulse the beam in the sec range.

3. Experimental Procedure and Results

3.1. γ Singles Spectra

γ singles spectra were taken during the irradiation of 90Zr and 91Zr targets with 233 and 250 MeV 58Ni ions. The 23 mg/cm2 thick targets were mounted at 45° to the beam axis. The beam was stopped in the targets. The compound nucleus of the system 58Ni \rightarrow 90Zr is 148Er, and is 149Er for 58Ni \rightarrow 91Zr. Figure 2 shows the in-beam γ singles spectrum taken with the coaxial Ge(Li) detector during the bombardment of 90Zr with 250 MeV 58Ni ions. The open reaction channels were identified with the help of the excitation functions, cross bombardments with 91Zr, 92Zr and 92Mo targets and the $\gamma\gamma$ coincidences. The relative yields of the open evaporation channels for the system 58Ni(250MeV) \rightarrow 90Zr are listed in Table 1. The yields were normalized to the yield of the $n2p$ channel being 100. Figure 3 shows the relevant part of the nuclear chart, where the yields of the residual nuclei are drawn. The strongest evaporation channels from the compound nucleus 148Er are $n2p(145$Dy), $2p(146$Dy), $3p(145$Tb) and $n3p(144$Tb).

3.2. $\gamma\gamma$ Coincidences

The $\gamma\gamma$ coincidences were measured in-beam during the irradiation of the 90Zr target. Four groups of coincident strong γ lines were identified. The first group (146Dy) contains the transitions at 682.9, 925.3, 1100, 673.7, 499, 237.2, 416.5, 289.7 and 127 keV. 7 spectra taken with the coaxial Ge(Li) detector in prompt coincidences to the transitions at 682.9, 237.2, 289.7 and 416.5 keV are seen in Fig. 4. All listed transitions except the 127 and 416.5 keV lines were weakly observed in prompt coincidence to the γ coincidence to the Dy K x-rays. All listed transitions were in prompt coincidence to the 145Tb. The second and third group of γ lines were tentatively assigned to the nuclei 145Dy and 145Tb. The level schemes for these nuclei are not yet accomplished.

The fourth group contains the γ transitions following the β decay of 145Tb. This decay scheme will be described in [6].