Magnetic Moment and Electric Quadrupole Moment of the Anomalous 186Ir Ground State

E. Hagn and E. Zech
Physik-Department, Technische Universität München, Garching, Federal Republic of Germany

Received June 20, 1980

The ground state nuclear moments of 186Ir ($j^* = 5^{+}$) have been determined with NMR on oriented 186Ir in Ni as $\mu = 3.80^{+0.12}_{-0.02} \mu_N$ and $Q = -3.00^{+0.15}_{-0.06}$b. The quadrupole moment is consistent with an anomalous $j^*K = 5^+_0$ or 5^+_1 ground state configuration. The explanation of the magnetic moment in terms of pure 5^+_0 or 5^+_1 configurations would require a high collective g_R-factor of $g_R > 0.76$. On the other hand the magnetic moment can be explained with a "normal" g_R and a mixed ground state configuration.

1. Introduction

There have been many speculations [1--6] about the structure of the ground state of 186Ir ($j^* = 5^{+}$) [4]; $T_{1/2} = 16$ h. From β-decay properties Hofstetter et al. [3] proposed $j^*K = 5^{+}1$ as the coupling of a proton in a $1/2^-$ [541] Nilsson state and a neutron in a $1/2^-$ [510] state. Emery et al. [7] anticipated theoretically that rotational bands built on these states should be strongly disturbed, and that $j = 4.5$ states would lie energetically lower than the corresponding band heads. Recently, the spectroscopic quadrupole moment has been measured by nuclear orientation (NO) on 186IrOs as $Q = -2.41(20)$b [6]. Applying the Bohr-Mottelson formula

$$Q = Q_0 \frac{3K^2 - j(j+1)}{(j+1)(2j+3)}$$

(1)

where Q_0 is the intrinsic quadrupole moment, which is fixed by deformation parameters in the frame of the rotational model, $K = 0$ or $K = 1$ has been found to be consistent with reasonable Q_0-values in this mass region. This result has been interpreted as confirmation of the $j^*K = 5^+_1$ configuration proposed by Hofstetter et al. [3]. The magnetic moment of an odd-odd nucleus with configuration j^*K is given by

$$\mu = g_R \cdot j + \frac{K}{j+1} (g_{K_1} \cdot K_1 + g_{K_2} \cdot K_2 - g_R \cdot K).$$

(2)

Here g_R is the collective g-factor and g_{K_1}, g_{K_2} are the single particle contributions of the valence proton and neutron. Spanhoff et al. [5] reported a first attempt to derive the magnetic moment of 186Ir from NO on 186Ir (in Fe$_{90}$Re$_{10}$) using the temperature dependence of the observed γ-anisotropies. They argued that their experimental value of $2.8(3) \mu_N$ would be in contradiction with $K = 0, 1$ and they considered several other couplings of Nilsson orbits. Their NMR-ON data on 186IrFe [8] giving a magnetic moment of $3.79(5) \mu_N$ supported this assumption.

To clarify the situation an experiment has to be performed with which μ and Q can be determined simultaneously. Only in this way it can be assured that the NO-measurements on 186IrOs and 186IrFe have probed the same nuclear state. (In principle the decay of 186Ir could take place via an up to now unobserved isomeric state with a half life of $\sim 10...100$ s. Because of the different spin-lattice relaxation times a NO measurement would then yield Q of the long-lived state but μ of the short-lived state. For example, such conditions are present for the decay of 191Os [10]).

2. Principle of Measurement

The NMR-ON method (nuclear magnetic resonance on oriented nuclei detected via the aniso-
tropy of radiation) [11] with Ni as host lattice is well suited for a measurement of μ and Q, as for IrNi a small electric field gradient (EFG) is present besides a large magnetic hyperfine field. The EFG originates from an unquenched orbital momentum of the 5d electrons (at the impurity site) and is thus collinear with the direction of the hyperfine field [12]. The magnetic interaction causes a high degree of polarization at the “convenient” temperature of 10 mK while the quadrupole interaction splits the resonance into $2j$ subresonances. The center of the subresonance corresponding to rf-transitions between state $|m\rangle$ and $|m+1\rangle$ is given by

$$v_{m \rightarrow m-1} = v_M + \Delta v_Q(m + 1/2) + b(1 + K) B_0$$

$$v_M = |g\mu_N H_{HF}|/h$$

$$v_Q = e^2 q Q/h$$

$$\Delta v_Q = 3 v_Q [2j(2j-1)]$$

$$b = |g\mu_N/h| \cdot \text{sign}(H_{HF})$$

Here g is the nuclear g-factor, H_{HF} is the magnetic hyperfine field, eq is the electric field gradient, Q is the spectroscopic quadrupole moment, K is the Knight-shift parameter, and B_0 is the external magnetic field.

For the actual experiment the resonance line width Γ, which is caused entirely by inhomogeneous broadening, plays an essential role: For $\Gamma/\Delta v_Q \ll 1$ the subresonances can be resolved, for $\Gamma/\Delta v_Q \approx 1$ an asymmetric structure is expected, from which Δv_Q can be deduced with less accuracy, while for $\Gamma/\Delta v_Q \gg 1$ all quadrupole effects are smeared out. Recently it has been demonstrated for 192IrNi that, with the use of highly pure Ni and very dilute alloys, Γ can be reduced so far that well-resolved quadrupole spectra are obtained [13].

3. Experimental Details

Samples of 186IrNi were prepared by recoil-implantation in the following way: A target stack consisting of 12 Re foils ($d = 12 \mu m$; natural abundance) each being followed by a Ni foil ($d = 2 \mu m$; purity >99.995%) was irradiated for 8h with 67 MeV α-particles ($I = 2 \mu A$) at the cyclotron in Karlsruhe. At this energy mainly 184Ir ($T_{1/2} = 3.4 h$) and 186Ir ($T_{1/2} = 15.8 h$) are produced via the nuclear reactions 185,187Re(α, $5n$)184,186Ir with cross sections of ~ 700 mb. All 184,186Ir nuclei which are produced in the rear surface layer within $\sim 0.2 \mu m$ thickness can leave the Re foils and are thus implanted homogeneously into the following Ni foil within a layer of about the same thickness. (The 194Ir activities do not disturb the experiment because of the relatively fast decay to stable 194Os. The activities produced in situ in the Ni foils do not disturb either). During the irradiation the Ni-foils are heated via the energy loss of the α-particles; thus a simultaneous annealing step takes place. After the irradiation the most active parts of the Ni-foils were cut out, and soldered to both sides of the cold finger of a demagnetization cryostat, and cooled to a temperature of ~ 10 mK. A small external magnetic field B_0 (0.435 kG $\leq B_0 \leq 4.78$ kG) was applied to orient the ferromagnetic domains and thus to establish a unique direction of the hyperfine field with respect to which the γ-anisotropy is present. The rf field was applied perpendicular to B_0 with a single-turn coil, the direction of both fields being parallel to the foil plane. The γ-counts of the 137 keV, 297 keV, and 435 keV transitions, measured at 0°, 90°, 180°, and 270° with respect to B_o, were recorded as a function of the rf-frequency, which was 1 kHz frequency modulated and swept continuously over the resonance region; the sweep rate was chosen so small that no significant asymmetry of the measured resonance spectrum due to the finite spin-lattice-relaxation time was observed. Details of the NMR-electronics are described in [9]. All measurements were performed during the warm-up of the cryostat between ~ 10 and ~ 20 mK.

4. Results and Discussion

The resonance was searched between 200 and 320 MHz with a large modulation width $\Delta f = \pm 0.75$ MHz and a frequency resolution of 1 MHz/channel. A resonance for the 296 keV transition measured at 0° is shown in the upper part of Fig. 1. The spectrum shown in the lower part of Fig. 1 has been recorded with a higher frequency resolution of 40 kHz/channel and a smaller modulation width $\Delta f = \pm 50$ kHz. The solid line represents the results of a least-squares fit, performed with the assumption of 7 equidistant quadrupole subresonances with constant line widths. The arrows show the center of these resonances, the height being directly proportional to the corresponding amplitudes. The v_{m}-resonance corresponds to the energetically lowest sublevel transition. The occurrence of ~ 4 resonances with decreasing amplitudes is expected according to the degree of orientation at ~ 10 mK. This has been verified with model calculations as described in [9]. The large arrow in Fig. 1 indicates the position of the “pure” magnetic resonance v_{m} which is si-