Using Lemma 2, it is now easy to show that the operator \(B \rightarrow f(U^{-1}, U) B \) is inverse to the operator

\[
e^{-\beta_0 A} e^{-\beta_0 B} - \lambda, \text{ so that } \lambda \not\in \sigma(e^{-\beta_0 A} e^{-\beta_0 B}).\]

Theorem 3 is proved.

The author is indebted to V. P. Maslov and M. V. Karasev for their valuable observations and discussions of the results.

LITERATURE CITED

3. E. B. Dynkin, "Representation of the series \(\ln(e^X e^Y) \) in noncommuting \(x \) and \(y \) in terms of commutators," Mat. Sb., 25, No. 1, 155-162 (1949).

APPROXIMATION OF THE FUNCTION \(\text{sign} \, x \) IN THE UNIFORM AND INTEGRAL METRICS BY MEANS OF RATIONAL FUNCTIONS

S. A. Agakhanov and N. Sh. Zagirov

Estimates are obtained for the nonsymmetric deviations \(R_n[\text{sign} \, x] \) and \(R_n[\text{sign} \, x]_L \) of the function \(\text{sign} \, x \) from rational functions of degree \(\leq n \), respectively, in the metric

\[
C([-\delta, -\delta] \cup [\delta, \delta]), \quad 0 < \delta < \exp(-\alpha \sqrt{n}), \quad \alpha > 0,
\]

and in the metric \(L[-1, 1] \):

\[
R_n[\text{sign} \, x] \leq \exp(-\pi n/(2 \ln n)), \quad n \rightarrow \infty,
\]

\[
10^{-n} \exp(-2\pi \sqrt{n}) < R_n[\text{sign} \, x]_L < \exp(-\pi \sqrt{n^2/4} + 150).
\]

Let \(0 < \delta < 1, \Delta(\delta) = [-1, -\delta] \cup [\delta, 1] \);

\[
R_n[f; \Delta(\delta)] = R_n[f] = \inf_{R(x) \Delta(\delta)} \max\{f(x) - R(x)\},
\]

\[
R_n[f; [-1, 1]]_L = R_n[f]_L = \inf_{R(x) [-1, 1]} \int_{-1}^{1} |f(x) - R(x)| \, dx,
\]

where \(R(x) \) is a rational function of order at most \(n \).

Bulanov [1] proved that for \(\delta \in [e^{-n}, e^{-1}] \) the inequality

\[
\exp\left(-\frac{\pi n}{2 \ln(1/\delta)}\right) \leq R_n[\text{sign} \, x] \leq 30 \exp\left(-\frac{\pi n}{2 \ln(1/\delta) + 4 \ln(1/\delta) + 4}\right)
\]

is valid. The lower estimate in this inequality was previously obtained by Gonchar ([2], cf. also [1]).

Here we sharpen estimate (1) on the right (cf. Sec. 1) and obtain corresponding estimates for \(R_n[\text{sign} \, x]_L \) (cf. Sec. 2). The sharpening of the right-hand side of estimate (1) is obtained by means of a more efficient (as compared with [1]) choice of interpolation points and poles of the rational function approximating \(\text{sign} \, x \).

1. UPPER ESTIMATE FOR $R_n[\text{sign } x]$

1.1. Preliminary Lemmas

Lemma 1. For any x the double inequality

$$\max \{0, 1 - x^2/6\} \leq 2x/(e^x - e^{-x}) \leq 1$$

is valid.

Proof. It suffices to carry out the proof for $x \geq 0$ (in view of the evenness of all the functions). From the Maclaurin series expansion of the function e^x we obtain

$$e^x - e^{-x} = 2x + 2x^3/3! + \ldots + 2x^{2k+1}/(2k+1)! + \ldots =$$

$$= 2x\left(1 + x^2/3! + \ldots + x^{2k}/(2k+1)! + \ldots \right) = 2x \varphi(x).$$

(2)

Thus,

$$2x/(e^x - e^{-x}) = 1/\varphi(x).$$

Moreover, $\varphi(x) \geq 0$ for $x \geq 0$, and if $x^2/6 < 1$, then bearing in mind that for $k = 1, 2, \ldots, 6k \leq (2k+1)!$, we obtain

$$\varphi(x) \leq 1 + x^2/6 + \ldots + (x^2/6)^t = (1 - x^2/6)^{-1};$$

(3)

if, on the other hand, $x^2/6 \geq 1$, then $1 - x^2/6 \leq 0$. In order to obtain the assertion of the lemma it suffices to apply inequality (3) to (2).

Lemma 2. For all $c > 0$, integers $n \geq 256c + 1/c$ and $k \in [e^{-2n}, e^{-\pi^2/e}]$ there exists a polynomial $P(x)$ of degree n such that

$$\max_{x \in [a, e^{-1}\ln\delta]} \left| \frac{P(x)}{P(-x)} \right| \leq 6 \exp\left(\frac{2n^6}{2\ln \delta} + 4\pi^2c + \frac{5}{2c} \right).$$

Proof. Put $m = 4c[-\ln \delta]$. Since for $a \geq 1$, $[a] \geq a/2$, for $n \geq c^{-1}$ we have

$$2c \ln (1/\delta) \leq m \leq 4c \ln (1/\delta).$$

Put $N = n - 2m$, $M = [N/\ln(1/\delta) + 3/2]$, $\alpha_j = \delta^{n-j}/N$, $0 \leq j < N$, $P(x) = (x - \alpha_j)^{m} \prod_{j=0}^{N-1} (x - \alpha_j)$.

Clearly, the degree of the polynomial $P(x)$ does not exceed $2m + N = n$, and for $n \geq 2$ we have $1 \leq n/2 \leq N \leq n$.

We estimate $|P(x)/P(-x)|$ for $\delta = \alpha_0 \leq x \leq \alpha_{N-1}$. Let $\delta \leq \alpha_p < x < \alpha_{p+1}$, $0 \leq p < N - 2$. Then

$$\left| \frac{P(x)}{P(-x)} \right| = \left(\frac{x - \delta}{x + \delta} \right)^m \left(\frac{\alpha_{N-1} - x}{\alpha_{N-1} + x} \right)^m \prod_{j=0}^{N-1} \left(\frac{x - \alpha_j}{x + \alpha_j} \right)^m \prod_{j=p+1}^{N-1} \left(\frac{\alpha_j - x}{\alpha_j + x} \right)^m \prod_{j=0}^{N-1} \left(\frac{\alpha_{N-1} - x}{\alpha_{N-1} + x} \right)^m.$$

We have

$$\left(\frac{x - \delta}{x + \delta} \right)^m \leq \frac{1}{\delta^{(p+1)/m}} \delta((p+1)/(m+1)) = \exp\left(m \ln \delta + \delta^{-(p+1)/m} \right) \leq \exp\left(\frac{m^2}{\ln \delta} \right).$$

Since $(2t - 1)m / \ln \delta \leq 2N$ for $0 < \delta < \exp[-(n/c)^{1/2}]$ and the values of $N, m, t \geq 1$ defined by us, we have

$$\left(\frac{x - \delta}{x + \delta} \right)^m \leq \exp\left(\frac{m^2}{\ln \delta} \right).$$

(4)

Analogously,

$$\left(\frac{\alpha_{N-1} - x}{\alpha_{N-1} + x} \right)^m \leq \left(\frac{1 - \delta^{(p+1)/m}}{1 + \delta^{(p+1)/m}} \right)^m = \exp\left(m \ln \delta \right).$$

453