Mixing of Intermediate Bosons with $Q\bar{Q}$ Bound States

F.M. Renard
Département de Physique Mathématique*, Université des Sciences et Techniques du Languedoc, F-34060 Montpellier Cedex, France

Abstract. We discuss the effects of a close degeneracy between the Z^0 and vector $Q\bar{Q}$ bound states; large mixing effects can appear modifying mainly the $Q\bar{Q}$ states (widths and couplings) and leading to curious structures inside the Z peak.

Search for heavy $Q\bar{Q}$ vector mesons will be one item of the program of the future LEP machine [1,2]. At least one such series is strongly expected, that one formed with top quarks ($t\bar{t}$) but other types of quarks could well exist too. Standard quarkonia models let us expect a repetition of the ψ and Y cases with a series of narrow states and a threshold enhancement filled with broader resonant states. We now consider the case where such a series lies near the Z^0 intermediate boson. The coupling of the Z^0 to the $Q\bar{Q}$ vector state V^0 should be similar to the one of the photon (already well-known for $\rho, \omega, \phi, \psi, Y, \ldots$) but the vicinity of the masses m_{+} and m_{0} is a source of strong mixing effects very specific of such a situation and this is what we discuss below.

Before let us just notice first that in principle a similar mixing could also well appear between Z^0 and $Q\bar{Q}$ axial vector states A^0 but as the 1^{++} bound state wave function at the origin is much weaker than the vector one mixing effects are expected to be much smaller too; secondly the following $Z^0 - V^0$ analysis can be exactly extended to the charged case $W^\pm - V^\mp (Q\bar{Q})$ provided that $m_{\pm} = m_{\mp}$.

The main source of $Z^0 - V^0$ mixing is due to the process of Fig. 1 (high order strong or electromagnetic terms are neglected). The $Z^0 - V^0$ vertex is similar in nature to the $\gamma - V^0$ vertex controlled by the value at the origin of the bound state wave function:

$$e g_{V^0\gamma} = 2e_q \sqrt{m_{\nu} \phi_{V^0}(0)}$$

$$e g_{V^0\gamma} = 2e \left(1 - \frac{3}{2} \sin^2 \theta_w \right) \sqrt{m_{\nu} \phi_{V^0}(0)}$$

For $m_{\nu} \approx 100 \text{ GeV}$, this leads to $g_{V^0\gamma} \approx 150 \text{ GeV}^2$ and $g_{V^0\gamma} \approx 100 \text{ GeV}^2$ for fundamental $Q\bar{Q}$ states. It is also possible that at high masses the effective $Q\bar{Q}$ potential becomes relatively more coulombic at short distances and consequently that the (hydrogenic) wave function increases more like $-\frac{3}{2} m_{\nu}$ near the origin such that $g_{V^0\gamma}$ could be slightly larger.

In order to quickly estimate mixing effects we use now the simple mass-mixing model already very successful in other vector meson problems [4]. Starting from unmixed Z^0, V^0 states we diagonalize the complex mass-matrix:

$$\begin{pmatrix}
 m_{Z^0} - \frac{i}{2} \Gamma_{Z^0} & \delta m_{Z^0\nu} \\
 \delta m_{Z^0\nu} & m_{\nu} - \frac{i}{2} \Gamma_{\nu}
\end{pmatrix}$$

using the complex mixing angle θ given by $\tan 2\theta = \frac{2\delta m_{Z^0\nu}}{m_{Z^0} - m_{\nu} - \frac{i}{2} (\Gamma_{Z^0} - \Gamma_{\nu})}$.
The physical states are now:
\[|Z\rangle = \cos \theta |Z^0\rangle + \sin \theta |V^0\rangle \]
\[|V\rangle = -\sin \theta |Z^0\rangle + \cos \theta |V^0\rangle \]
(3)

their coupling constants to decay channels \(f \) become
\[g_{zf} = \cos \theta g_{z0f} + \sin \theta g_{v0f} \]
and
\[g_{vf} = -\sin \theta g_{z0f} + \cos \theta g_{v0f} , \]
(4)

and the physical masses and widths become:
\[m_Z - \frac{i}{2} \Gamma_Z = \left(m_{Z^0} - \frac{i}{2} \Gamma_{Z^0} \right) \cos^2 \theta \]
\[+ \left(m_{V^0} - \frac{i}{2} \Gamma_{V^0} \right) \sin^2 \theta + \delta m_{zv0} \sin 2 \theta \]
\[m_V - \frac{i}{2} \Gamma_V = \left(m_{V^0} - \frac{i}{2} \Gamma_{V^0} \right) \cos^2 \theta \]
\[+ \left(m_{Z^0} - \frac{i}{2} \Gamma_{Z^0} \right) \sin^2 \theta - \delta m_{zv0} \sin 2 \theta \]
(5)

Any amplitude (for example \(e^+ e^- \to (Z + V) \to f \)) passing through \(Z \) and \(V \) mesons will be written [5]:
\[R_f = \frac{g_{z0} g_{zf} + g_{v0} g_{vf}}{D_Z} \]
(6)
with the propagators \(D = s - m^2 + i m \Gamma \).

The mixing term is given by the \(Z^0 - V^0 \) transition:
\[\delta m_{zv0} = \frac{e \delta g_{zv0}}{2 m_{v0}}, \]
(7)

it can be complex if physical intermediate states \(n \) can be inserted between the \(Z^0 \) and the \(V^0 \) (for example when \(V^0 \) lies above the threshold for \(Q\bar{Q} \) like mesons), in such a case:
\[\text{Im} \delta m_{zv0} \simeq -\frac{i}{2} \Gamma_{Z^0\rightarrow n}^{1/2} \Gamma_{V^0\rightarrow n}^{1/2} \]
(8)

From the process of Fig. 1 one expects \(\text{Re} \delta m_{zv0} \simeq 0.15 \) GeV for low-lying \(Q\bar{Q} \) vector states. For excited states the wave function at the origin and consequently \(\text{Re} \delta m_{zv0} \) become smaller; above the \(Q\bar{Q} \) threshold an imaginary part is developed proportionally to the total width \(\Gamma_{Z^0}^{1/2} \) and a reasonable order of magnitude seems to be \(\text{Im} \delta m_{zv0} \simeq 0.1 \text{ GeV} \). So from Eq. (3), using \(\Gamma_{Z^0} \simeq 2.7 \text{ GeV} \) and \(\Gamma_{v0} \ll \Gamma_{Z^0} \) it appears that an appreciable mixing effect can appear only if \(|m_{Z^0} - m_{V^0}| \ll \Gamma_{Z^0} - \Gamma_{V^0} \). In the best case where \(m_{Z^0} \approx m_{V^0} \) we get \(|\theta| \approx 0.2 \) which is not negligible at all. If \(m_{Z^0} \) is far from \(m_{V^0} \), \(\theta \to 0 \) and the \(Z \) and \(V \) amplitudes can be separately considered as unmixed \(Z^0 \) and \(V^0 \) ones.

In the following we consider explicitly the case where \(m_{Z^0} \approx m_{V^0} \) and discuss the effect of the vicinity of the \(Z^0 \) on the whole \(Q\bar{Q} \) vector spectrum.

In the normal case \(|\theta| \ll 0.2 \), from Eq. (5) we get physical masses \(m_Z \) and \(m_V \) differing at most by \(0.1 \) GeV from the bare masses \(m_{Z^0} \) and \(m_{V^0} \). If the \(V^0 \) width is very small (i.e. tens of keV as expected from QCD for low-lying states) then the physical \(Z \) width will also be only slightly affected by the mixing, whereas on the opposite the \(V \) width is enlarged roughly up to \(\Gamma_V \approx |\theta|^2 \Gamma_{Z^0} \lesssim 0.1 \) GeV. Let us also see what happens in specific channels using Eq. (4). The couplings of \(Z \) to leptons and light quarks will effectively be weakly modified because both
\[\left(g_{v0} \gamma_\mu - \frac{e^2}{m_{v0}^2} \right) \approx \left(g_{z0} \gamma_\mu - \frac{e^2}{m_{z0}^2} \right) \approx \left(g_{z0} \gamma_\mu - \frac{e^2}{m_{z0}^2} \right) \approx \left(g_{z0} \gamma_\mu - \frac{e^2}{m_{z0}^2} \right) \]
and
\[(g_{v0} \gamma_\mu - \gamma_\mu \gamma_5) \approx (g_{z0} \gamma_\mu - \gamma_\mu \gamma_5) \]

On the opposite the \(V \) couplings are strongly enhanced, roughly \(g_{v0} \gamma_\mu - \gamma_\mu \gamma_5 \). In addition a large parity violation is induced because they get an axial coupling \(g_{v0} \gamma_\mu \gamma_5 \) which can be (similarly to \(\psi^{(0)} \) states) of several tens of MeV; only the couplings to heavy quarks \(Q\bar{Q} \) will have a different behaviour as now the bare couplings \(g_{v0} \gamma_\mu \) and \(g_{z0} \gamma_\mu \) may have comparable magnitudes and appreciable modifications in phase and magnitude appear through Eq. (4). In the (very improbable) limiting case where both \(m_{Z^0} \approx m_{V^0} \) and \(\Gamma_{V^0} \approx \Gamma_{Z^0} \), one would get independently of \(\delta m_{zv0} \) the limiting mixing angle