On Likelihood Robustness

Yu. A. Rozanov

International Institute for
Applied Systems Analysis
2361 Laxenburg, Austria

Communicated by A. V. Balakrishnan

Let

\[\xi(t) = a(t) + \eta(t), \quad t \in T, \]

be a standard "signal plus noise" model where \(a(t) \) and \(\eta(t) \) are independent Gaussian processes on an abstract set \(T \) (the process \(a(t) \) can be deterministic).

ally an observer is quite uncertain about a probability distribution \(\nu \) of the noise \(\eta(t) \), \(t \in T \). With respect to this point A. V. Balakrishnan* has recently posed a question about asymptotic behavior of the likelihood "signal/noise" ratio \(\frac{d\nu}{d\nu^0} \), when \(\nu \) approaches a proper "white noise" distribution \(\nu^0 \) from below:

\[\pi = \log \frac{d\nu}{d\nu^0} = \frac{1}{2} \log \left(\frac{d\nu}{d\nu^0} \right) = \frac{1}{2} \log \left(\frac{d\nu}{d\nu^0} \right) \]

or for any \(\nu = \{A_k\} \); here \(R, R_0 \) are the corresponding correlation matrices of zero mean variables \(\eta(t) \). For example in a case of the generalized processes on a Hilbert space the correlation operators \(R \) might approach the identity.

One can see a difficulty to formulate an exact question because of the fact that different distributions \(\nu \) are orthogonal so there is not an obvious base to consider \(\frac{d\nu}{d\nu^0} \) convergence as functions of "elementary events". Nevertheless there is a phenomenon which one may consider as a robustness property of the likelihood ratio \(\frac{d\nu}{d\nu^0} \). Let us set

\[\pi = \log \frac{d\nu}{d\nu^0} - E \log \frac{d\nu}{d\nu^0} \]

and let \(\pi_0 \) be determined in a similar way with respect to the distributions \(\nu^0 \), \(\nu^0 \). There is a natural way of imbedding \(\pi_0 \) into the Hilbert \(L^2 \)-space with a norm

\[\| \cdot \|_p = \int |\cdot|^2 d\nu. \]

*Personal communication.
For the variables \(\pi \) as functionals of the observing process \(\xi(t), t \in T \), we have

\[
\lim \| \pi - \pi_0 \|_P = 0. \quad (3)
\]

For details we refer to the book [1] and start with a case when the "signal" \(a(t) \) is deterministic. As known in this case the variable \(\pi \) is a linear functional of the process \(\xi(t), t \in T \), in a sense that \(\pi \) belongs to the linear closure \(H^1_\xi \) of all linear forms

\[
A_\xi = \sum_k A_k \xi(t_k).
\]

Moreover there is a one-to-one bounded mapping

\[
A_\xi \leftrightarrow A\eta \quad (4)
\]

which helps to identify the corresponding \(\pi \) as

\[
\pi \leftrightarrow \frac{h}{\|h\|_P^2},
\]

where \(h \) is the minimal element of the hyperplane

\[
l(\cdot) = 1;
\]

this linear continuous functional on \(H^1_\eta \) is determined by the signal \(a(t), t \in T \), as

\[
l[\eta(t)] = a(t), \quad t \in T.
\]

We ought to note that under the condition (1) the mapping (4) is one-to-one bounded uniformly over all \(R, R \uparrow R_0 \), because

\[
\|A\xi\|^2_P = \|A\eta\|^2_P + l(A\eta)^2.
\]

Let \(\| \cdot \|_{P^0} \) be the \(L^2 \)-norm with respect to \(P^0 \). Because of condition (1) we have

\[
\|A\eta\|_P \leq \|A\eta\|_{P^0}
\]

so any \(P^0 \)-fundamental sequence of linear forms, \(A_n\eta, n = 1, 2, \ldots \), is \(P \)-fundamental which gives us a natural way of imbedding \(\pi_0 = \lim_{n \to \infty} A_n \xi \) into the space \(H^1_\xi \) mentioned above; we have

\[
\pi_0 \leftrightarrow \frac{h_0}{\|h_0\|_{P^0}^2}
\]