Semisimplicial Objects and the Eilenberg-Zilber Theorem

D. B. A. Epstein (Coventry)

The object of this paper is to do an explicit computation which arises in connection with reduced powers in homological algebra, and in particular in determining P^0. (The computation shows that $P^0 = 1$ in the topological case.) We are also able to solve a problem of Dold [1] p. 273. Dold asks when an FD-complex with a commutative associative diagonal has $P^0 = 1$, and produces an example "from nature" where $P^0 \neq 1$. This paper also gives a way of constructing Steenrod operations, when one has a pair of adjoint functors and suitable axioms are satisfied. This is done in Chapter 8 of the preceding paper. Dold [1] has shown how to use the methods described here to construct Steenrod operations in the conventional topological situation.

We have borrowed shamelessly from Dold [1] and Dold and Puppe [2]. The second paper cited gives Carter's version of the Eilenberg-Zilber Theorem, which we reproduce here. We also give yet another (yet really the same) proof of the famous normalisation theorem of Eilenberg and MacLane [5]. In justification we must point out that the theorems which we repeat here, do not appear in the literature in sufficiently functor-theoretical language for our purposes. We were reluctant to impose the burden of translation on readers and have taken it on ourselves.

§ 1. Category Theory

Let \mathcal{C} be an arbitrary category. We construct a category \mathcal{C}^+ as follows. The objects of \mathcal{C}^+ are the same as those of \mathcal{C} and $\text{Hom}_{\mathcal{C}^+}(A, B)$ is the free abelian group on $\text{Hom}_{\mathcal{C}}(A, B)$. Composition of morphisms is defined so that it is bilinear and so that it agrees with the composition in \mathcal{C} on the generators of the free abelian groups.

Let \mathcal{D} be a category such that for any two objects $A, B \in \mathcal{D}$, $\text{Hom}(A, B)$ is an abelian group and composition is bilinear. We say \mathcal{D} is pre-0-additive. For any category \mathcal{C}, \mathcal{C}^+ is pre-0-additive. We form a new category \mathcal{D}^0 by adjoining a zero object 0. We have to add to the category exactly two morphisms for each object A of \mathcal{D}, namely the members of the one element sets $\text{Hom}(0, A)$ and $\text{Hom}(A, 0)$. We also have the one-element set $\text{Hom}(0, 0)$. We now form an additive category \mathcal{D}^0 (that is, we adjoin finite direct sums) as follows. The objects of \mathcal{D}^0 are k-tuples of objects of \mathcal{D}^0, which we think of as arranged in a column.
with \(k \) rows \((k = 1, 2, 3, \ldots)\). A morphism from a \(k \)-tuple to an \(s \)-tuple is an \((s \times k)\)-matrix whose entries are morphisms in \(\mathbb{D}^0 \) (with appropriate domain and range objects). We shall write \(\mathbb{C}^\oplus \) instead of \(\mathbb{C}^{+\oplus} \) and \(\mathbb{C}^0 \) instead of \(\mathbb{C}^{+\!0} \) if there is no possibility of confusion.

1.1. Any functor from \(\mathbb{C} \) to an additive category \(\mathbb{A} \) has a unique additive extension from \(\mathbb{C}^+ \) to \(\mathbb{A} \). Any additive functor from \(\mathbb{D} \) to \(\mathbb{A} \) has an additive extension to \(\mathbb{D}^\oplus \) which is unique (up to natural isomorphism).

Remark. Any pre-0-additive category \(\mathbb{D} \) can be embedded as a full subcategory of an abelian category. See FREYD [3] pp. 112–115.

1.2. Let \(\mathbb{D} \) and \(\mathbb{B} \) be pre-0-additive categories. We define \(\mathbb{D} \otimes \mathbb{B} \) to be the category whose objects are pairs \((D, P)\) with \(D \in \mathbb{D} \) and \(P \in \mathbb{B} \) and whose morphisms from \((D, P)\) to \((D', P')\) are \(\text{Hom}(D, D') \otimes \text{Hom}(P, P') \). We write the object \((D, P)\) as \(D \downarrow \mathbb{B} \).

2. The Semisimplicial Category

Let \([n]\) be the set of integers \(\{0, 1, \ldots, n\} \). The semisimplicial category \(\mathbb{S} \) has as its objects the sets \([n]\) for \(n = 0, 1, \ldots \) and as morphisms the (weakly) monotone functions \([m] \rightarrow [n]\). We have the usual monotone functions

\[
\begin{align*}
\varepsilon_i^\circ &: [n-1] \rightarrow [n] \\
\eta_i^\circ &: [n-1] \rightarrow [n]
\end{align*}
\]

leaving \(i \in [n] \) uncovered and covering \(i \in [n] \) twice.

We shall prove the normalisation theorem, concerning the structure of \(\mathbb{S}^{-}\!0 \), where \(\mathbb{S}^{-}\! \) is the dual of \(\mathbb{S} \). In \(\mathbb{S}^{-}\!0 \) we have the objects \([n]\) for \(n \geq 0 \) and the zero object \(0 \). If \(n, m \geq 0 \) then the group of morphisms from \([m]\) to \([n]\) is the free abelian group on the monotone functions \([n] \rightarrow [m]\). It will be convenient to put \([n]^{-\!}=0\) if \(n<0 \). If \(n>0 \) and \(0 \leq i \leq n \), we define

\[
\partial_i^\circ: [n]^{-\!}\rightarrow [n-1]^{-\!}
\]

corresponding to \(\varepsilon_i^\circ \). If \(0 \leq i \leq n \), we define

\[
s_i^\circ: [n]^{-\!}\rightarrow [n+1]^{-\!}
\]

corresponding to \(\eta_i^\circ \). We now define \(\partial_i^\circ: [n]^{-\!}\rightarrow [n-1]^{-\!} \) and \(s_i^\circ: [n]^{-\!}\rightarrow [n+1]^{-\!} \) to be zero for all other integers \(i \) and \(n \).

2.2. Definition. A semisimplicial object in a category \(\mathbb{C} \) is a contravariant functor \(\mathbb{S} \rightarrow \mathbb{C} \). If \(\mathbb{C} \) is pre-additive, this is the same as an additive covariant functor \(\mathbb{S}^\!^{-\!0} \rightarrow \mathbb{C} \). A dual semisimplicial object is obtained by interchanging “covariant” and “contravariant” above.