Necessary Conditions for Multiple Integral Problem in the Calculus of Variations

Viorel Barbu
Faculty of Mathematics, University of Iaşi, Iaşi 6600, Romania

1. Introduction

Let \(\Omega \) be a bounded and open subset of the Euclidean space \(\mathbb{R}^n \) with a sufficiently smooth boundary. We shall study here the following multiple integral problem in the calculus of variations:

\[
\min \left\{ \int_\Omega L(y(x), y'(x)) \, dx ; y \in K \right\}
\]

(1.1)

where \(K \) is either all of \(W^{1,p}_0(\Omega) \) or the closed convex subset \(\{ y \in W^{1,p}_0(\Omega) ; y(x) \geq \varphi(x) \text{ a.e. } x \in \Omega \} \) (the "obstacle" problem).

There exists an extensive literature on necessary conditions of optimality for problem (1.1) in the case where \(K = W^{1,p}_0(\Omega) \) and \(L \) is either differentiable (see e.g. [12, 15]) or a convex integrand [7]. Recently, Clarke [5] has considered the general case where the integrand \(L \) is locally Lipschitz and derived an analogue of the classical Euler-Lagrange conditions of optimality expressed in term of the generalized gradient of \(L \). Here, by a different method already used by the author in other contexts (see [1, 2]) one extends the Clarke optimality theorem in [5] to general problems of the form (1.1) (see Theorem 1 below). The same approach is used to obtain in Theorem 2 a similar result for integrands \(L \) of the form (3.5).

The plan of the paper is the following.

The main results of this paper, Theorems 1 and 2, are stated in Sect. 3 and proved in Sects. 4 and 5 respectively. These theorems are used to derive in Sect. 6 some new existence for nonlinear elliptic variational inequalities.

2. Preliminaries

Throughout this paper \(\Omega \) will be a bounded and open subset of the Euclidean space \(\mathbb{R}^n \) with the boundary \(\Gamma \) sufficiently smooth. By \(L^p(\Omega ; \mathbb{R}^m) ; 1 \leq p \leq \infty \), we shall denote the space of all \(p \)-summable vectorial functions \(y : \Omega \to \mathbb{R}^m \). By \(C(\bar{\Omega} ; \mathbb{R}^m) \) we shall denote the space of all continuous functions \(y : \bar{\Omega} \to \mathbb{R}^m \). For
\(m = 1 \) we shall simply write \(L^p(\Omega) \) and \(C(\Omega) \). For any natural number \(k \) and \(1 \leq p \leq \infty \) we shall denote by \(W^{k,p}(\Omega) \), \(W_0^{k,p}(\Omega) \), and \(W^{-k,p}(\Omega) \) the usual Sobolev spaces on \(\Omega \). We shall write \(H^k(\Omega) = W^{k,2}(\Omega) \) and \(H_0^k(\Omega) = W_0^{k,2}(\Omega) \).

For a given real valued function \(y \) on \(\Omega \) we shall denote by \(V_y(\mathbf{x}) \) the gradient of \(y \) at \(\mathbf{x} \).

Let \(\varphi : \mathbb{R}^m \to \mathbb{R} \) be a locally Lipschitzian function. By the Rademacher theorem \(\varphi \) is a.e. differentiable on \(\mathbb{R}^m \) and obviously the function \(V\varphi \) is measurable and essentially bounded on every bounded subset of \(\mathbb{R}^m \). We associate with \(\varphi \) the multivalued mapping \(D\varphi \) defined by

\[
D\varphi(y) = \bigcap_{\delta > 0} \bigcap_{v(N) = 0} \text{conv} \{ \nabla \varphi(S(y, \delta) \cap N) \}
\]

where \(S(y, \delta) \) is the ball of radius \(\delta \) and center \(y \) in \(\mathbb{R}^m \) and \(v \) is the Lebesgue measure in \(\mathbb{R}^m \).

Such a mapping [see also formula (6.2) below] arises in theory of generalized solutions for ordinary differential equations (see [9]).

The generalized gradient of \(\varphi \) at \(y \), denoted \(\partial \varphi(y) \) is the set (see [5, 14])

\[
\partial \varphi(y) = \text{conv} \{ w \in \mathbb{R}^m; w = \lim_{\mathbf{y}_n \to y} V\varphi(y_n) \}
\]

(2.2)

It turns out that \(D\varphi(y) = \partial \varphi(y) \) for all \(y \in \mathbb{R}^m \). We also recall that if \(\varphi \) is a convex function then \(\partial \varphi \) is just the subdifferential of \(\varphi \), i.e.,

\[
\partial \varphi(y) = \{ w \in \mathbb{R}^m; \varphi(y) \leq \varphi(z) + \langle w, y - z \rangle \}; \quad \forall z \in \mathbb{R}^m \}.
\]

(2.3)

In the sequel we shall denote by the same symbol \(| \cdot | \) the norm in \(\mathbb{R}^n \), \(\mathbb{R}^{m+1} \), and \(\mathbb{R}^m \) and by \(\langle \cdot, \cdot \rangle \) the usual inner product in these spaces.

3. The Main Results

Consider the minimization problem (1.1) where \(K \) is the closed convex subset of \(W_0^{1,p}(\Omega) \), \(1 \leq p \leq \infty \)

\[
K = \{ y \in W_0^{1,p}(\Omega); y(x) \geq \psi(x) \text{ a.e. } x \in \Omega \}.
\]

Here \(\psi \in C(\Omega) \) is a given function satisfying the condition

\[
\psi(x) \leq 0 \text{ for all } x \in \Gamma.
\]

The particular case \(K = W_0^{1,p}(\Omega) \) which corresponds to \(\psi \equiv -\infty \) will be allowed.

As regards the integrand \(L : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \) the following condition will be imposed

(i) \(L(y, z) \geq 0 \) for all \((y, z) \in \mathbb{R} \times \mathbb{R}^n \), and for some constant \(M \), for all \((y, z) \) and \((u, v) \) in \(\mathbb{R} \times \mathbb{R}^n \), we have

\[
L(y + u, z + v) \leq \exp(M(|u, v|)) \left[L(y, z) + M(|u, v|)(1 + |(y, z)|) \right].
\]

(3.1)

A condition of this type has been already used by Clarke [5] and we must notice that it implies that the function \(L \) is locally Lipschitzian and

\[
|\nabla L(y, z)| \leq M(L(y, z) + |(y, z)| + 1), \text{ a.e. } (y, z) \in \mathbb{R} \times \mathbb{R}^n.
\]

(3.2)