A Table of Good Lattice Points in Three Dimensions*

Gershon Kedem and S. K. Zaremba

Received June 17, 1974

Abstract. A table of three-dimensional lattice points with moduli ranging from 2120 to 6066, sufficient for high-precision numerical computation of triple integrals is presented; the data are shown to confirm some conjectures concerning good lattice points.

Good lattice points, to use the term introduced by Hlawka [1], provide us with a very efficient method of numerical integration over multidimensional intervals, or, more generally, over domains which can be conveniently reduced to multidimensional unit intervals (see, for instance, [1—3]). For the convenience of the reader, we recall the definition of good lattice points.

By lattice points in general we understand here points with integral coordinates; the latter will be denoted by a letter with subscripts running from 1 to s if s is the number of dimensions, while the same letter in bold face will denote the point itself. For any lattice point h we put

$$R(h) = \max(1, |h_1|) \ldots \max(1, |h_s|).$$

Given an arbitrary positive integer m, which will be described as the modulus, and a lattice point g, let $\rho(g)$ be the minimum of $R(h)$ for all the lattice points $h \equiv 0 \equiv (0 \ldots 0)$ satisfying

$$g \cdot h \equiv 0 \pmod{m}, \quad (1)$$

where the dot denotes the scalar product. An s-dimensional lattice point g is described as good modulo m if

$$\rho(g) > (s-1)! m (2 \log m)^{1-s}.$$

The method of good lattice points for integrating a function $f(x)$ over the s-dimensional unit interval

$$Q^s: 0 \leq x_i \leq 1 \quad (i = 1, \ldots, s)$$

consists of taking as the approximate value of the integral the expression

$$\frac{1}{m} \sum_{k=0}^{m-1} f\left(\frac{k}{m} g\right),$$

where g is a good lattice point modulo m, and the coordinates of the argument of f are understood to be reduced modulo m. Upper bounds for the error in terms of $\rho(g)$ depend on the smoothness and, possibly, on the periodicity of f [4].

* Sponsored in part by the United States Army under Contract No. DA-31-124-ARO-D-462.
In particular, if \(f \) can be represented as a finite trigonometric polynomial

\[
f(x) = \sum_{R(h) < \theta(g)} c_h \exp(2\pi i h \cdot x),
\]

then the integration formula is exact. More generally, if: (i) for a positive integer \(r \) all the partial derivatives of \(f \) up to

\[
\frac{\partial^r f}{\partial x_1^r \ldots \partial x_s^r}
\]

are of bounded variation over \(Q_s \) in the sense of Hardy and Krause; and if: (ii) all the partial derivatives of \(f \) up to

\[
\frac{\partial^{(r-1)s} f}{\partial x_1^{r-1} \ldots \partial x_s^{r-1}}
\]

have values agreeing on opposite sides of \(Q_s \), then the error of integration has an upper bound of the form of

\[
P^{(r+1)}(g) = \sum R(h)^{-(r+1)},
\]

the sum being extended to all \(h \neq 0 \) satisfying (1), and where \(K \) depends only on \(f \). The condition (ii) may appear unduly restrictive, but there are various methods of transforming the integral so as to satisfy this condition when (i) is satisfied [2, 4].

As to \(P^{(r+1)}(g) \), it has been proved [4] that for any sufficiently large \(m \) and any \(n \geq 2 \),

\[
P^{(n)}(g) \leq \frac{2^{3s+1} (\log m)^{s-1}}{(s-1)! (\log 2)^{s-1} \varrho(g)^n},
\]

but this is a rather crude upper bound; there is strong numerical evidence to support the conjecture that

\[
P^{(n)}(g) = O\left(\varrho(g)^{-n} \log m \right)
\]

irrespective of the number of dimensions.

If \(f \) does not satisfy the conditions (i) and (ii) above, but is of bounded variation in the sense of Hardy and Krause, and if \(g \) is a good lattice point, using the concept of discrepancy, one finds [4] that the error of integration is

\[
O\left(\frac{2^{3s-2} (\log m)^{2s-1}}{(s-1)! (\log 2)^{2s-1} m} \right),
\]

which is still much better than the accuracy claimed by the Monte Carlo method; this upper bound is also crude, and should be capable of improvement.

The existence of good lattice points with \(g_1 = 1 \) in any number \(s \geq 2 \) of dimensions modulo any sufficiently large \(m \) has been proved recently [5]; previously, a proof was known only for the case of a prime \(m \). It is conjectured, though, that for any \(s \geq 2 \), and any sufficiently large \(m \) there exist lattice points modulo \(m \) with \(\varrho(g) \) exactly of the order of \(m (\log m)^{2s-1} \). This is known to be true when \(s = 2 \), at least for some arbitrarily large \(m \), for if \(m = u_n g_1 = 1, g_2 = u_{n-1} \), where \(\langle u_i \rangle \) is the sequence of Fibonacci numbers, we have \(\varrho(g) = u_{n-2} \); in the case of \(s \geq 3 \), there is substantial numerical evidence to support this conjecture.