On the lattice of manifolds of all algebras \mathcal{L} we study the operator of nilpotent closure $J: \alpha \rightarrow \alpha + \mathfrak{F}$, where \mathfrak{F} is a nilpotent manifold of \mathfrak{M}-algebras. With a given system of identities Σ defining \mathfrak{M}, we construct a system Σ^*, giving the manifold $\alpha + \mathfrak{F}$. It is proved that if α does not contain \mathfrak{M}, then the lattice of submanifolds of $\alpha + \mathfrak{F}$ is the double of the lattice of submanifolds of α. We describe the free and subdirect indecomposable manifolds of algebras $\alpha + \mathfrak{F}$. Let $B \subseteq \alpha + \mathfrak{F}$ and A be a dense retract of B. We denote by $\theta(B)$ the lattice of congruences on B. The theorem is proved: $\theta(B)$ is a complemented lattice if and only if $\theta(A)$ is a complemented lattice.

1. For any domain of operators Ω which does not contain operators with no arguments, we denote by $\mathcal{L}\Omega$ the lattice of all manifolds of Ω-algebras. We consider the manifold \mathfrak{M}, defined by the system of identities $\Sigma_0 = \omega_1(x_1, \ldots, x_n) = \omega_2(y_1, \ldots, y_m)$, where $\omega_1, \omega_2 \in \Omega$. One calls \mathfrak{M} a nilpotent manifold of signature Ω. It is clear that \mathfrak{M} is an atom in the lattice $\mathcal{L}\Omega$. Our goal: to study on the lattice $\mathcal{L}\Omega$ the map $J_{\mathfrak{M}}: \gamma \rightarrow \gamma + \mathfrak{M}$. More precisely, to study the algebra structure from the manifold $\gamma + \mathfrak{M}$ for arbitrary $\gamma \in \mathcal{L}\Omega$.

Clearly the map $J_{\mathfrak{M}}$ is a closure operator on the lattice $\mathcal{L}\Omega$.

Let α be an arbitrary manifold and Σ be some system of identities. Let us arrange to denote by α' the collection of all identities which are satisfied on all algebras from α, and by Σ' the manifold defined by the system Σ. We consider two arbitrary manifolds α and β, for which $\alpha' \subseteq \beta'$ and $\beta' \subseteq \alpha'$. We denote by $[\Sigma]$ the collection of all identities deducible from Σ and not deducible from Σ_0, i.e., $[\Sigma] = \Sigma' \setminus \Sigma'$.

Proposition 1. If $\alpha + \mathfrak{M} = \beta + \mathfrak{M}$ and $[\alpha'] \cap [\beta'] = \emptyset$, then $\alpha = \beta$.

Proof. Let $\alpha + \mathfrak{M} = \beta + \mathfrak{M}$ and $[\alpha'] \cap [\beta'] = \emptyset$; then one can find an identity of the form $u(x) = x$ belonging to both α' and β'. We assume that for some system of identities Σ we have: $[\Sigma] = \emptyset$. We fix some identity of the form $w(x) = x$, deducible from Σ, and we consider an arbitrary identity $p = t$ from $[\Sigma]$. Changing each variable y in this identity into $w(y)$, we get a new identity, deducible from Σ. From this it follows that the system Σ can equivalently be represented in the form $\Sigma_{\Omega} \cup \{u(x) = x\}$, where Σ_{Ω} consists only of identities belonging to Σ_0. We assume now that Σ gives the manifold $\alpha + \mathfrak{M}$. But then, by virtue of the facts established above, the system $\Sigma \cup \{u(x) = x\}$ is equivalent to the system α', i.e., $\alpha' = \beta'$.

Corollary 1. On the lattice of manifolds of semigroups the operator $J_{\mathfrak{M}}$ will be a one-one map.

In fact, for manifolds of semigroups α and β, which are understood not to contain \mathfrak{M}, always $[\alpha] \cap [\beta] = \emptyset$.

Corollary 2. Any system of identities Σ can be represented equivalently in the form $\Sigma_{\Omega} \cup \{u(x) = x\}$, where $u(x) = x \in \Sigma$ and $\Sigma_{\Omega} = \Sigma'$.

We shall go on now to elucidate the following question: how are the algebras from $J_{\mathfrak{M}}(\gamma)$ arranged for preassigned manifold γ? We introduce the following definition. Let A and B be two arbitrary Ω-algebras. One will call B an \mathfrak{M}-extension of the algebra A if: i) A is isomorphic to the algebra $\Omega(B) = \bigcup \omega(B, \ldots, B)$;
ii) there exists an endomorphism φ of the algebra B, which is the identity on the subalgebra $\Omega(B)$; i.e., $\Omega(B)$ is a retract of the algebra B.

The complete description of the algebras from the manifold $J_{\varnothing}(\alpha)$ is given by the following

THEOREM 1. The algebra B belongs to the manifold $J_{\varnothing}(\alpha)$ if and only if it is an \mathfrak{R}-extension of some algebra of the manifold α.

Proof. Let $B \in J_{\varnothing}(\alpha)$ and $B \not\in \alpha$. From this it follows that on B no identity from $[\alpha']$ can be satisfied. We consider on B the partition defined by the classes $\Omega(B)$ and $B \setminus \Omega(B)$. It is clear that $\Omega(B)$ is a subalgebra of B, while it belongs to α. Let $u(x) = x \in [\alpha']$. We define on B a map φ, by setting $\varphi(x) = u(x)$. Clearly φ is an endomorphism of B which is the identity on $\Omega(B)$.

We assume now that some algebra B is an \mathfrak{R}-extension of an algebra A of the manifold α. We choose an arbitrary identity $u = v \in \alpha' \cap [\alpha']$ and we shall show that it is satisfied on B. In fact, if this identity is not trivial, then $u = \varphi(u) = \varphi(v) = v$. Thus it is proved that $B \in J_{\varnothing}(\alpha)$. The theorem is completely proved.

We proceed now to the presentation of a general method for finding for a given system of identities Σ a system of identities Σ^* defining the nilpotent closure Σ'.

LEMMA. If the manifold α is given by the identity $u(x) = x$, then its nilpotent closure is defined by the system $\Sigma_u = \{\omega(x_1, ..., x_n) = \omega(u(x_1), x_2, ..., x_n), ..., \omega(x_1, ..., x_n) = \omega(x_1, ..., x_{n-1}, u(x_n))\}$, $u(\omega(x_1, ..., x_n)) = \omega(x_1, ..., x_n)$, where ω is an arbitrary operator from \mathfrak{R}.

Proof. It is clear that the identity $u(x) = x$ derives from the system Σ_u. We consider an algebra B from the manifold Σ_u and we shall show that it is an \mathfrak{R}-extension of some algebra satisfying the identity $u(x) = x$, whence on the basis of Theorem 1 it will follow that $B \in J_{\varnothing}(\alpha)$. The theorem is completely proved.

Let $A = \Omega(B)$; then obviously $A \in \alpha$. We consider on B the map $\varphi: x \mapsto u(x)$. Since on B the identities of the system Σ_u are satisfied,

$$\varphi(\omega(x_1, ..., x_n)) = \omega(\varphi(x_1), ..., \varphi(x_n)) = \omega(x_1, ..., x_n),$$

and thus everything is proved.

We consider an arbitrary system of identities Σ, but such that $\Sigma \not\subset [\alpha']$. By virtue of Corollary 2, Σ can be represented in the form $\Sigma_u \cup \{u(x) = x\}$.

THEOREM 2. The system of identities $\Sigma^* = \Sigma_u \cup \Sigma_u$ gives the nilpotent closure of the manifold Σ'.

In fact, on the basis of the lemma and Theorem 1 it follows that each algebra from Σ^* is an \mathfrak{R}-extension of some algebra Σ', and hence Σ^* defines the manifold $J_{\varnothing}(\Sigma')$.

COROLLARY 1. The operator J_{\varnothing} is an endomorphism on the lattice \mathfrak{L}_{Ω}. If $\alpha, \beta \in L_{\Omega}$, then always $J_{\varnothing}(\alpha + \beta) = J_{\varnothing}(\alpha) \cap J_{\varnothing}(\beta)$. We assume that $\alpha' \not\subset [\alpha']$ and $\beta' \not\subset [\beta']$, because if $\alpha' \subset [\alpha']$ and $\beta' \subset [\beta']$, then there is nothing to prove. We have

$$J_{\varnothing}(u(x) = y) = J_{\varnothing}(y(x) = y).$$

By virtue of Corollary 2 of Theorem 1, α' and β' are representable respectively in the form $\alpha' = \cup \{u(x) = x\}$ and $\beta' = \cup \{v(x) = x\}$, and using the lemma, we have:

$$J_{\varnothing}(\alpha' \cup \beta') = J_{\varnothing}(\alpha' \cup \beta') = J_{\varnothing}(\alpha' \cup \beta') \cap J_{\varnothing}(\beta').$$

Now let $\alpha' \not\subset [\alpha']$ and $\beta' \not\subset [\beta']$. Applying an analogous argument, we also get $J_{\varnothing}(\alpha' \cap \beta') = J_{\varnothing}(\alpha') \cap J_{\varnothing}(\beta')$. For any manifold γ we denote by \mathfrak{R}_{γ} the lattice of all submanifolds of γ. Let L be some lattice and L_1 a sublattice of it. If $L \setminus L_1 = L_2$ is also a sublattice of L and there exists an isomorphism $f: L_1 \to L_2$ such that $x \equiv f(x)$, then one says that L is the double of L_1.

COROLLARY 2. If $\alpha' \not\subset [\alpha']$, then the lattice $J_{\varnothing}(\alpha)$ is the double of the lattice \mathfrak{R}_{α}.

In fact, we consider the map $J_{\varnothing}: \mathfrak{R}_{\alpha} \to J_{\varnothing}(\alpha)$. Since any two elements of \mathfrak{R}_{α} satisfy the condition $[\gamma'] \cap [\beta'] = \phi$, by virtue of Proposition 1 the map J_{\varnothing} will be one-one and by Corollary 1 an isomorphism of the lattices \mathfrak{R}_{α} and $L_1 = J_{\varnothing}(\alpha) \setminus L_2$. But since always $\gamma \subset J_{\varnothing}(\gamma)$, everything is proved.

We now consider some examples of nilpotent closures of concrete manifolds of algebras.