SELF-NORMALIZING NILPOTENT SUBGROUPS OF THE FULL LINEAR GROUP OVER A FINITE FIELD

N. A. Vavilov

UDC 519.46

It has been proved (Ref. Zh. Mat., 1977, 4A170) that in the full linear group \(\text{GL}(n_2, q) \), over a finite field of \(q \) elements, \(q \) odd or \(q = 2 \), the only self-normalizing nilpotent subgroups are the normalizers of Sylow 2-subgroups and that for even \(q > 2 \) there are no such subgroups. In the present note it is deduced from results of D. A. Suprunenko and R. F. Apatenok (Ref. Zh. Mat., 1960, 13586; 1962, 9A150) that this is true for any \(n \).

It was proved in [5] that in any finite solvable group there exist self-normalizing nilpotent subgroups (Carter subgroups) and that all such subgroups are conjugate. It is of interest to study nonsolvable groups in which there are Carter subgroups. A well-known result of P. Hall asserts that the Sylow 2-subgroups of the symmetric groups are self-normalizing. Carter subgroups of \(\text{GL}(n_2, q) \), the full linear group of degree \(n \) over a finite field \(F_q \) of \(q \) elements, were studied in [4]. It was shown that if \(n = 2 \) or \(n = 3 \), the following is true: If \(q \) is odd or \(q = 2 \), there exists a single conjugacy class of Carter subgroups in \(\text{GL}(2, q) \) and \(\text{GL}(3, q) \), namely, the normalizers of the Sylow 2-subgroups; if \(q \) is even and \(q > 2 \), then there are no Carter subgroups in these groups (the case \(n = 2, q = 2^{n+1} \) was considered earlier in [8]). In [4] it was asked whether these results can be extended to the case of the full linear group of arbitrary degree \(n \). In the present paper we show that an affirmative answer to this question is an almost direct consequence of the results of [2] and [3], which are devoted to a description of the maximal irreducible nilpotent subgroups of \(\text{GL}(n_2, q) \). More precisely, we have the following.

Theorem. In the full linear group \(G = \text{GL}(n, q) \) of degree \(n > 2 \) over a field \(F_q \) of \(q \) elements, \(q \) odd or \(q = 2 \), there exists a single conjugacy class of self-normalizing nilpotent subgroups, namely, the normalizers of the Sylow 2-subgroups. If \(q > 2 \) is given, \(G \) contains no self-normalizing nilpotent subgroups.
1. Sylow Subgroups

As usual, we denote by $\text{Syl}_p(G)$ some Sylow p-subgroup of the finite group G, by $Z(G)$ the center of G, and by $[X]$ the integer part of the number X. In the sequel, ℓ is a rational prime different from p and from 2. If m is a natural number, we write $\ell^r|m$ if $\ell^r|\ell^n$ and $\ell^r|\ell^m$.

Lemma 1. Suppose $G = \text{GL}(n, q)$, $q = p^k$, $n \geq 2$, ℓ is a prime different from 2 and from p. Then the group $H = Z(G)\text{Syl}_\ell(G)$ is different from its normalizer in G.

Proof. Recall how the Sylow ℓ-subgroups of G are constructed (see [3] or [7], Theorem 1.4B). Suppose e is the smallest natural number such that $\ell^e|\ell^q - 1$. Suppose first that $n = \ell^e$. A Sylow ℓ-subgroup P_ℓ of $\text{GL}(\ell^e)$ has order ℓ^{h_i}, where $h_i = \ell^e + (1 + \ell + \ldots + \ell^{e-1})$. Its structure is as follows: P_ℓ is a cyclic group of order ℓ^r, and $P_i = P_{i-1} \otimes Z_\ell$ is the wreath product of P_{i-1} and a cyclic group Z_ℓ of order ℓ, where in the role of Z_ℓ we can choose, for example, the subgroup generated by the matrix

$$
\begin{pmatrix}
0 & E & 0 \\
E & 0 & \ddots \\
& & & 0
\end{pmatrix}
$$

where E is the identity matrix of order ℓ^{e-1}. It is clear that if $i > 0$, then P_i is normalized, for example, by the matrix

$$
\begin{pmatrix}
0 & E & 0 \\
E & 0 & \ddots \\
& & & 0
\end{pmatrix}
$$

not belonging to $Z(G)P_\ell$. We now consider the realization of the group P_ℓ. Suppose η is a generator of the multiplicative group of the field \mathbb{F}_q, η the minimal polynomial of η over \mathbb{F}_q. Suppose $f_\ell(x) = \alpha_0 + \alpha_1 x + \ldots + x^e$, where $\alpha_0, \ldots, \alpha_{e-1} \in \mathbb{F}_q$. Then the matrix

$$
A = \begin{pmatrix}
0 & & -\alpha_0 \\
& \ddots & \ddots & \ddots \\
& & & & \alpha_0 \\
0 & & & & 1 - \alpha_{e-1}
\end{pmatrix}
$$

is conjugate over \mathbb{F}_q to the matrix $\text{diag}(\eta, \eta^q, \ldots, \eta^{q^{e-1}})$ and therefore has order q^{e-1}. The matrix $A^{(q^{e-1}/\ell^e)}$ generates P_ℓ. But since, by hypothesis, $\ell \not| 2$, the equality $\ell^r = q^{e-1}$ is impossible and therefore the subgroup P_ℓ is properly contained in the subgroup generated by A, and the group $Z(G)P_\ell$ is not self-normalizing in $\text{GL}(\ell, q)$ if $e > 1$.

Now suppose n is arbitrary. Put $d = \lfloor n/e \rfloor$ and represent d in the form $d = d_0 + d_1 \ell + \ldots + d_k \ell^k$, $0 \leq d_i < \ell$. Then a Sylow ℓ-subgroup P of $\text{GL}(n, q)$ has the form $I x_1 \times \ldots \times P_{i_0} \times \ldots \times P_{i_k}$, where i occurs $n - d e$ times, P_0 occurs d_0 times, ..., and P_k occurs d_k times. By what has already been proved, $N_\ell(Z(G)P) = Z(G)P$, if $d_i > 0$ for some $i > 0$, or if $e > 1$ and $d_0 > 0$. But in the remaining cases $e \geq n$ and $e = 1$, $\ell > n$, the subgroup P is normalized by all monomial matrices.