RELATIVE Pu239 BREEDING RATIO IN NATURAL URANIUM-ORDINARY WATER LATTICES

L. V. Komissarov and V. A. Tarabanko

Measurements were performed of the quotient of breeding ratios in uranium-water lattices and a uranium-graphite lattice at the start of conversion. The plutonium breeding ratio in uranium-water lattices for certain lattice spacings is larger than in a uranium-graphite lattice.

Introduction

An important index of the operation of a nuclear reactor which breeds plutonium is the Pu239 breeding ratio, which is defined as the ratio of the number of Pu239 nuclei \(N_p \) produced in the reactor to the number of consumed U235 nuclei \(N_u \):

\[
P = \frac{N_p}{N_u}.
\]

At the present time the parameter of uranium-water lattices which are required for the computation of the breeding ratio are not sufficiently well known. It is therefore important to verify the results of a computation by experimental means.

In the present work we measured the quotient of the breeding ratios in uranium-water lattices and in a uranium-graphite reactor whose parameters have been well investigated:

\[
\frac{P_{\text{water}}}{P_{\text{graphite}}} = \frac{(N_p)_{\text{water}}}{(N_p)_{\text{graphite}}} \frac{(N_u)_{\text{graphite}}}{(N_u)_{\text{water}}}
\]

We studied triangular lattices (with 45, 55 and 60 mm spacings) composed of natural uranium and ordinary water as moderator.

The lattices were composed of aviallite tubes 43 x 1.0 mm in diameter containing uranium slugs 35 mm in diameter and 100 mm long. The slugs were sheathed in 1 mm aluminum. The experiments were performed on physical uranium-water reactors with a natural uranium zone measuring about 1 m (Fig. 1).

The uranium-graphite reactor had a square lattice with 200 mm spacing. The slugs of natural metallic uranium with the same dimensions as in the uranium-water lattices were not provided with aluminum sheathing.

Experimental Method

1. Determination of \(\frac{(N_u)_{\text{water}}}{(N_u)_{\text{graphite}}} \)
Fig. 1. Diagram of a physical uranium-water reactor. ❶) channels with enriched uranium slugs; ❷) channels with natural uranium slugs; ❸) channels with experimental slug.

It is well known that the production of Pu239 in a reactor occurs according to the following scheme:

\[
\text{Pu}239 \rightarrow \text{Np}239 \rightarrow \text{Pu}239.
\]

Since the measurements are relative, the determination of the number of Pu239 nuclei produced in a uranium slug can be reduced to the measurement of the \(\beta\)-activity of Pu239. In order to determine the relative quantity of Pu239 we used disks of natural uranium 35 mm in diameter and 0.1 mm thick placed between the ends of separated sections of a uranium slug (Fig. 2). The experimental slug was inserted into the lattice and irradiated with a neutron beam of \(\sim 10^7 \) neutrons/cm\(^2\)/sec. for 30 min. The irradiation times in the uranium-water lattices and the uranium-graphite lattice were identical. After irradiation the uranium disk was chemically cleansed of fission fragments and of the products of natural radioactive decay of uranium by sodium-uranyl-acetate precipitation. The purified uranium was pressed into tablets (of \(\sim 200 \) mg/cm\(^2\) density) whose \(\beta\)-activity was measured with constant geometry by a Geiger counter. The background of natural uranium decay products was disregarded since it amounted to only one percent of the measured effect. Measurements of the \(\beta\)-activity of the purified uranium for 1 to 1.5 hours showed that the half-life was 23.5 \(\pm 0.2 \) min, which agrees with the

* The effect of Np239 consumption during the irradiation period was negligibly small.