The Decay $D^0 \to \bar{K}^0 \phi$

ARGUS Collaboration

DESY, D-2000 Hamburg, Federal Republic of Germany

Institut für Physik, Universität, D-4600 Dortmund 2, Federal Republic of Germany

J.C. Gabriel, K.R. Schubert, J. Stiewe, K. Strahl, R. Waldi, S. Weseler

Institut für Hochenergiephysik, Universität, D-6900 Heidelberg 2, Federal Republic of Germany

Institute of Particle Physics 8, Canada

R. Ammar, D. Coppage, R. Davis, S. Kanekal, N. Kwak

University of Kansas 9, Lawrence, KS 66044, USA

B. Boštjančič, G. Kernel, M. Pleško, J. Stefan

Institute and Department of Physics, University, YU-61000 Ljubljana 10, Yugoslavia

L. Jönsson

Institute of Physics, University, S-22362 Lund 11, Sweden

Institute of Theoretical and Experimental Physics, SU-117259 Moscow, USSR

R. Childers, C.W. Darden, Y. Oku

University of South Carolina 12, SC 29208, USA

H. Gennow

University of Stockholm, S-11346 Stockholm, Sweden

Received 21 August 1986

1 Weizmann Institute of Science, Rehovot, Israel
2 Supported by the Bundesministerium für Forschung und Technologie, FRG
3 Carleton University, Ottawa, Canada
4 York University, Downsview, Canada
5 Now at the University of Tokyo, Tokyo, Japan
6 University of Toronto, Toronto, Canada
7 McGill University, Montreal, Canada
8 Supported by the Natural Sciences and Engineering Research Council, Canada
9 Supported by the U.S. National Science Foundation, USA
10 Supported by Raziskovalna skupnost Slovenije, the Internationales Büro KfA, Jülich and DESY, Hamburg, FRG
11 Supported by the Swedish Research Council, Sweden
12 Supported by the U.S. Department of Energy, under contract DE-AS09-80ER10690, USA
The decay $D^0 \rightarrow \bar{K}^0 \phi$ has been investigated using data accumulated by the ARGUS experiment, which operates at around 10 GeV centre-of-mass energies in the DORIS II $e^+ e^-$ storage ring at DESY. The decay $D^0 \rightarrow \bar{K}^0 \phi$ is a signature for flavor annihilation by W-exchange in weak decays. It is shown that this decay occurs at $(15.5 \pm 3.3)\%$ of the rate for the well established decay $D^0 \rightarrow K^+ \pi^-$. This translates into a branching ratio for $D^0 \rightarrow \bar{K}^0 \phi$ of $(1.18 \pm 0.25 \pm 0.17)\%$.

The decay $D^0 \rightarrow \bar{K}^0 \phi$ was first observed by the ARGUS Collaboration in 1985 with the unexpectedly large branching ratio of $(1.43 \pm 0.45)\%$ [1]. This implied that indeed the W-exchange diagram (Fig. 1) [2] is important, despite the fact that this process should be helicity and color suppressed. Because this diagram can only contribute to the D^0 decay rate, such an enhancement offers a possible explanation for the observed lifetime differences between charged and neutral D mesons. In view of the importance of the decay $D^0 \rightarrow \bar{K}^0 \phi$, we have repeated the analysis with the total available sample of 152 pb$^{-1}$ collected by the ARGUS collaboration [3]. The new ARGUS vertex chamber [4] was operational for about 50 pb$^{-1}$ of this running, and results in a considerable improvement of data quality, most notably, a 60% increase in the efficiency for reconstructing K^- from secondary vertices.

Using our standard criteria for event selection and particle identification [1, 3], we obtain the invariant $K^0 S K^+ K^-$ mass spectrum shown in Fig. 2, which exhibits a clean D^0 signal of 205 \pm 38 events at a mass of $(1.864.3 \pm 1.5)$ MeV/c2, with a RMS width of (7.3 ± 1.5) MeV/c2. No further cut is applied. The 2-body contributions to the 3-body decay $D^0 \rightarrow \bar{K}^0 K^+ K^-$ can be determined by investigating the $K^+ K^-$ subsystem. By requiring $|M(K^0 S K^+ K^-) - M(D^0)| < 16.2$ MeV/c2 we obtain the $K^+ K^-$ invariant mass spectrum shown in Fig. 3 (points with error bars). Clearly visible is a prominent ϕ signal with the expected mass and shape. Only the

![Graph](image1)

Fig. 1. W-exchange diagram for the decay $D^0 \rightarrow \bar{K}^0 \phi$

![Graph](image2)

Fig. 2. $K^0 S K^+ K^-$ mass spectrum for events from $e^+ e^-$ interactions at centre-of-mass energies around 10 GeV

![Graph](image3)

Fig. 3. $K^+ K^-$ mass spectrum for events with $|M(K^0 S K^+ K^-) - M(D^0)| < 16.2$ MeV/c2 (points with error bars). The hatched histogram gives the contribution which is not correlated with a D^0 meson

![Graph](image4)

Fig. 4. Distribution of the helicity angle θ in the decay $D^0 \rightarrow K^0 S \phi$, $\phi \rightarrow K^+ K^-$. The candidates are defined by $|M(K^0 S K^+ K^-) - M(D^0)| < 16.2$ MeV/c2 and $|M(K^+ K^-) - M(\phi)| < 6.6$ MeV/c2. The contribution to this angular distribution which is not correlated with a D^0 meson has already been subtracted.