A Profile of Perceived Capabilities for the Preschool Child

Stephen J. Bagnato and John T. Neisworth
The Pennsylvania State University

Ronald C. Eaves
Auburn University, Auburn, Alabama

ABSTRACT: The necessity of evaluating adult perceptions of children's developmental capabilities gains in importance when one considers both the emerging research on expectancy and learning as well as the trend toward multi-source nondiscriminatory assessment as a basis for individualized program planning. This paper presents an adaptation of Iscoe and Payne's Functional Classification System which focuses upon profiling the differential subjective impressions of adults who interact with handicapped and non-handicapped preschoolers. A brief description of the profile is presented as well as its role in the screening, assessment, intervention, evaluation sequence. Preliminary research data on the measure's reliability and practicality are also cited.

Few efforts have focused on evaluating adult perceptions of child capabilities. The emerging expectancy literature stresses the real effects that subjective impressions can have on child progress. Such variables as physical attractiveness (Adams and LaVoie, 1974; Clifford and Walster, 1973; LaVoie and Adams, 1974; Ross and Salvia, 1975), race (Eaves, 1975; Rubovits and Maehr, 1973), socioeconomic status (Miller, McLaughlin, Haddon, and Chansky, 1968; Neer, Foster, Jones, and Reynolds, 1973), and sex (Jackson and Lahaderne, 1967; Meyer and Thompson, 1956) have been shown to influence teachers' impressions of student performance capabilities. These impressions may lead to significant differences in how teachers and aides work with children.

The work of Iscoe and Payne (1972) is exemplary in providing a method of identifying and recording value judgments about children.

Requests for reprints should be sent to Stephen J. Bagnato, Jr., Room 104, Cedar Building, Department of Special Education, Pennsylvania State University, University Park, Pennsylvania 16802.
Without doubt, much value judgement is involved in classifying exceptional children, and actually there seems no way to avoid such judgments. In fact, it may very well be that value judgments are an extremely important aspect of dealing with exceptional children. (p. 10)

However, because of its focus, the Iscoe and Payne system is not readily applicable to preschool populations. The growing interdisciplinary involvement of school psychologists and educators with preschool populations demands the availability of an instrument designed to detect and summarize the subjective impact made on adults by children.

The Perceptions of Developmental Skills Profile (PODS)

Goals and Descriptions

The PODS (Bagnato, Eaves, Neisworth, 1977) is a screening instrument for standardizing and profiling the diverse perceptions of significant adults who interact with the handicapped preschooler. It was constructed for use in HICOMP, a comprehensive outreach model program for handicapped preschoolers. The PODS was designed to fulfill five major functions:

1. To screen and assess globally the handicapped preschooler’s range of functional capabilities upon entry into a program;
2. To estimate roughly the curriculum entry points for each child;
3. To serve as a general monitor of a child’s perceived progress through an established curriculum by focusing on acquisition of functional skills;
4. To facilitate communication between teachers, parents, doctors, school psychologists and others, and to standardize diverse perceptions about the child;
5. To provide an estimate of the realism with which an individual rater judges a child’s status by comparing subjective measures on the PODS with performance estimates obtained elsewhere so that discrepancies may be reconciled through parent counseling, teaching, agency training and consultation.

The format for the PODS is a rating scale of functional skills within four major developmental areas: Communication, Social/Emotional Adjustment, Physical, and Cognitive development. Each developmental area is analyzed into subordinate functions outlined in Figure 1.