Production of $\rho^{+}, \rho^{-}, \rho^{0}(770)$, $\eta(550)$, $\omega(783)$ and $f_2(1270)$ mesons in $\bar{\nu}$ neon and ν neon charged current interactions

BEBC WA59 Collaboration

1 Dipartimento di Fisica dell'Università e Sezione INFN, Bari, Italy
2 University of Birmingham, UK
3 Inter-University Institute for High Energies, ULB-VUB, Brussels, Belgium
4 CERN, European Laboratory for Particle Physics, Geneva, Switzerland
5 Nuclear Research Centre Demokritos, Athens, Greece
6 LPNHE, Ecole Polytechnique, Palaiseau, France
7 Imperial College of Science and Technology, London, UK
8 Institute of Nuclear Physics, Cracow, Poland
9 Max-Planck-Institut für Physik und Astrophysik, München, Federal Republic of Germany
10 Department of Nuclear Physics, Oxford, UK
11 Rutherford Appleton Laboratory, Chilton, Didcot, UK
12 DPhPE, Centre d'Etudes Nucleaires, Saclay, France
13 Institute of Physics, University of Stockholm, Sweden
14 Department of Physics and Astronomy, University College London, UK

Received 11 May 1989

Abstract. The production of the meson resonances $\rho(770)$ (all three charge states), $\eta(550)$, $\omega(783)$ and $f_2(1270)$ in $\bar{\nu}$ Ne and ν Ne charged current interactions is investigated in a bubble chamber experiment with BEBC at CERN. Except for the f_2, the main features of resonance production are reasonably well described by the Lund model, although the average resonance multiplicities are overestimated by the model by $(67 \pm 30)\%$. The average multiplicities of all resonances, including the f_2, are well reproduced by a semiempirical model, whose parameters were determined from hadron interaction data.

1 Introduction

It is known that the pions and kaons occurring in high energy interactions are to a large extent the decay products of resonances [1]. Resonance production characteristics are therefore expected to reflect the dynamics of the interactions more closely than the pion and kaon spectra and to provide a better ground for comparisons with theoretical models.

The present paper reports on the inclusive production of the non-strange meson resonances $\rho(770)$ (in all three charge states), $\eta(550)$, $\omega(783)$ and $f_2(1270)$ in $\bar{\nu}$ Ne and ν Ne charged current interactions. These interactions are unique in selecting particular types of quarks in the target: in $\bar{\nu}$ interactions the dominant process is the conversion of a u quark into a d quark, and in ν interactions the conversion of a d quark into a u quark. Thus the data provide information on the fragmentation of these quarks into meson resonances. They also serve as a test for the influence of nuclear reinteractions on the production of these resonances.

The outline of the paper is as follows. Section 2 deals with the experimental details and describes the procedure used to obtain the average multiplicities of the produced resonances from mass distributions.

* Now at CERN, Geneva, Switzerland
** Now at Tufts University, Boston, USA
The experimental procedure followed in this paper is identical to the one described in [2]. Additional details about the neutrino energy estimation, the method of \(\pi^0 \) reconstruction, the treatment of low momentum protons (stubs) and the Monte Carlo calculations are also given in [2].

b) Reconstruction of \(\pi^0 \) mesons

Neutral pions are reconstructed by combining photons (\(\gamma \)) that converted into electron-positron pairs within the bubble chamber. A special procedure is applied to select from all \(\gamma \gamma \) pairs within an event those which very likely result from a \(\pi^0 \) decay. In this paper all selected \(\gamma \gamma \) pairs are called \(\pi^0 \). Monte Carlo calculations show that 80% of the \(\pi^0 \)'s obtained in this way are correctly combined \(\gamma \gamma \) pairs. These 80% correspond to 30% of all produced \(\pi^0 \). For further details of the \(\pi^0 \) reconstruction see [2].

c) Extraction of the resonance signals

The numbers of produced \(\rho^0, \rho^+, \rho^- \) and \(f_2 \) mesons are obtained by fitting the following expression to the respective invariant mass distribution (see Table 2):

\[
\frac{dN}{dm} = a_1 \cdot BG + a_2 \cdot BW_\rho + a_3 \cdot BG \cdot BW_f
\]

with

\[
BG = (m - 2m_\pi)^2 \cdot \exp(\beta m + \gamma m^2),
\]

\[
BW_\rho = \frac{m}{q} \cdot \Gamma_\rho \cdot \frac{1}{(m_\rho^2 + (m - m_\pi)^2) + (m_\rho \Gamma_\rho)^2}
\]

\[
\Gamma_\rho = \Gamma_\rho \cdot \frac{q}{q_\rho} \cdot \frac{m_\rho}{m},
\]

\[
BW_f = \frac{m}{q} \cdot \Gamma_f \cdot \frac{1}{(m_\rho^2 + (m - m_\pi)^2) + (m_\rho \Gamma_f)^2}
\]

The experimental samples used (\(p_x > 5 \text{ GeV/c}, 1.5 \text{ GeV} < W < 10 \text{ GeV} \)) and average values of \(E_\nu \), \(W \) and \(Q^2 \) for the total event sample are listed in Table 1.

Table 1. Experimental samples used (\(p_x > 5 \text{ GeV/c}, 1.5 \text{ GeV} < W < 10 \text{ GeV} \)) and average values of \(E_\nu \), \(W \) and \(Q^2 \) for the total event sample

<table>
<thead>
<tr>
<th>(\bar{\nu} \text{ Ne})</th>
<th>(\nu \text{ Ne})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events for</td>
<td></td>
</tr>
<tr>
<td>(1.5 \text{ GeV} < W < 4.0 \text{ GeV})</td>
<td>8336</td>
</tr>
<tr>
<td>(4.0 \text{ GeV} < W < 10 \text{ GeV})</td>
<td>5723</td>
</tr>
<tr>
<td>(1.5 \text{ GeV} < W < 10 \text{ GeV})</td>
<td>14059</td>
</tr>
<tr>
<td>(\langle E_\nu \rangle)</td>
<td>39 \text{ GeV}</td>
</tr>
<tr>
<td>(\langle W \rangle)</td>
<td>39 \text{ GeV}</td>
</tr>
<tr>
<td>(\langle Q^2 \rangle)</td>
<td>4.0 \text{ GeV}^2</td>
</tr>
</tbody>
</table>

In Sect. 3 the production of resonances is studied as a function of \(W, x_F, z \), and \(p_T \) and comparisons are made with predictions of the Lund model and of a semi-empirical model for high-energy inclusive reactions. A summary is given in Sect. 4.

Table 2. Resonance parameters of two-pion resonances

<table>
<thead>
<tr>
<th>Reso-</th>
<th>Mass</th>
<th>Mass</th>
<th>PDG value of central mass</th>
<th>PDG value of width in fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>nance distribution at resonance (MeV)</td>
<td>(MeV)</td>
<td>(MeV)</td>
<td>(MeV)</td>
<td>(MeV)</td>
</tr>
<tr>
<td>(\rho^0)</td>
<td>(\pi^+ \pi^-)</td>
<td>28</td>
<td>770</td>
<td>153</td>
</tr>
<tr>
<td>(\rho^+)</td>
<td>(\pi^+ \pi^0)</td>
<td>38</td>
<td>770</td>
<td>153</td>
</tr>
<tr>
<td>(\rho^-)</td>
<td>(\pi^- \pi^0)</td>
<td>38</td>
<td>770</td>
<td>153</td>
</tr>
<tr>
<td>(f_2)</td>
<td>(\pi^+ \pi^-)</td>
<td>36</td>
<td>1274</td>
<td>185</td>
</tr>
</tbody>
</table>

Table 3. Resonance parameters of three-pion resonances

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass distribution at resonance (MeV)</th>
<th>Mass resolution of central value used (MeV)</th>
<th>PDG value of width in fit (MeV)</th>
<th>PDG value of width in fit (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>(\pi^+ \pi^- \pi^0)</td>
<td>12</td>
<td>549</td>
<td>0</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(\pi^+ \pi^- \pi^0)</td>
<td>22</td>
<td>782</td>
<td>8.5</td>
</tr>
</tbody>
</table>

2 Experimental details

a) The experiment

The data come from an experiment in which the bubble chamber BEBC was exposed to the \(\bar{\nu} \) and \(\nu \) wide band beams from the SPS at CERN. BEBC was filled with a 75 mole % Ne-H\(_2\) mixture, whose radiation and hadronic collision lengths are 42 cm and 92 cm respectively.

Muons are identified with good efficiency (> 85%) for momenta above 5 GeV/c) by an external muon identifier and most of the protons with momenta below 800 MeV/c are identified on the basis of ionization and range in Ne-H\(_2\). Most of the remaining charged particles cannot be identified and thus are called pions.

For the present analysis only events with a momentum above 5 GeV/c and a total hadronic mass \(W \) between 1.5 and 10 GeV are accepted. The available statistics and the mean values of the quantities \(E_\nu \), energy of the incident (anti-)neutrino, \(W \) (effective mass of the total hadronic system), and \(Q^2 \) (squared four-momentum transfer between the incoming and outgoing lepton) are listed in Table 1.