The Scattering of Sound Waves by a Cone.

By

H. S. Carslaw of Sydney (Australia).

The problem of the disturbance produced by a Point-Source of Sound in an Infinite Medium containing a Rigid Obstacle has been solved for the case when the obstacle is a Sphere*, and when it consists of two planes intersecting at any angle**. This paper contains the solution of the case when the obstacle is a Right Circular Cone of any angle.

§ 1.

The Spherical Polar Coordinates (r, θ, φ) are used, and the cone is given by $\theta = \theta_0$. The region occupied by the medium is defined by

$$0 < r < \infty,$$

$$0 < \theta < \theta_0,$$

$$0 < \varphi < 2\pi.$$

We require a solution of the equation

$$(1) \quad \nabla^2 u + k^2 u = 0,$$

which, together with its first and second derivatives, is finite and single-valued throughout this region, except at the point (r', θ', φ'), where the source is situated.

**) If the angle is $\frac{\pi}{m}$, m any positive integer, the ordinary method of images gives the solution. If the angle is $\frac{n\pi}{m}$, m and n any positive integers, the method of images in a Riemann's Space is applied. [Carslaw, Some Multiform Solutions of the Partial Differential Equations of Physical Mathematics and their Applications, Proc. Lond. Math. Soc. (1) 30, p. 155 (1899)]. In a later communication [Proc. Lond. Math. Soc. (2) 8, p. 365 (1912)] I have pointed out that a suitable solution of the equation of period 2α leads at once to the solution of the problem for the case of two planes intersecting at any angle α.
At \((r', \theta', \varphi')\), \(u\) is to become infinite as

\[
e^{-ikR} \frac{e^{-ikR}}{R},
\]

when \(R\) tends to zero.

At the surface of the cone \(\theta = \theta_0\), we have the condition

\[
\frac{\partial u}{\partial n} = 0 \quad \text{(i. e. } \frac{\partial u}{\partial \theta} = 0)\]

And since there is no reflection at infinity\(^\ast\), \(u\) cannot involve terms of the type

\[
e^{ikr},
\]

when \(r\) tends to infinity.

\section*{§ 2.}

I shall examine first the case when the source is situated on the axis of the cone, so that \(\theta' = 0\).

From symmetry it follows that \(u\) does not involve \(\varphi\), and equation (1) takes the form

\[
\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \mu} \left((1 - \mu^2) \frac{\partial u}{\partial \mu}\right) + k^2 u = 0 \quad (\mu = \cos \theta).
\]

If the cone were absent and the medium filled all space, the solution would be

\[
u_0 = \frac{e^{-ikR}}{R},
\]

where

\[
R = \sqrt{r^2 + r'^2 - 2rr'\mu}.
\]

It is known that, with this notation,\(^\ast\ast\)

\(^\ast\) Pockels called attention [in his book \(\text{"Uber die partielle Differentialgleichung } \Delta u + k^2 u = 0 \text{ und deren Auftreten in der Mathematischen Physik, p. 305}\)] to the fact that the analytical problem is indeterminate in the case of an infinite region unless some condition is added of this nature.

Compare also a paper by Sommerfeld in Jahresb. D. Math. Ver. 22 (1913), entitled \(\text{Die Greensche Funktion der Schwingungsgleichung.}\)

\(^\ast\ast\) Cf. Heine, \(\text{Handbuch der Kugelfunktionen, Bd. 1, p. 346; Macdonald, Proc. Lond. Math. Soc. (1) 32, p. 157 (1900). In this paper }\)

\[
K_n(ix) = \frac{\pi}{2 \sin n\pi} e^{-\frac{1}{2} \pi i n} (J_n(x) - e^{n\pi i} J_n(x))
\]

is taken as the Second Solution of Bessel's Equation of the \(n\)th order.