Effects of Furazolidone on the Mutation of *Vibrio cholerae* Cells to Streptomycin Resistance

S. K. Banerjee and S. N. Chatterjee

Biophysics Division, Saha Institute of Nuclear Physics, 37 Belgachia Road, Calcutta-700 037, India

Abstract. Furazolidone induced the streptomycin-resistant (Str-r) forward mutation of *Vibrio cholerae* (classical) OGAWA 154 cells. The induced mutation frequency increased up to the furazolidone dose of 7.0 µg/ml × h and then gradually declined. Statistical analysis (t-test and variance analysis) revealed that the furazolidone-induced mutation of *V. cholerae* cells at any of the doses studied was highly significant.

Furazolidone or N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone, one of the members of the group of synthetic nitrofurans, displays a wide spectrum of antimicrobial activity [16, 25, 28, 31] and has useful application in human therapy [4]. The mode of action of this drug at the molecular level has been under study in our laboratory. The drug at a level of 0.5 µg/ml inhibited DNA synthesis while stimulating RNA synthesis at the same time and causing filamentation of the cells [11, 27]. DNA of cholera phage φ149 was at least ten times more sensitive to this inhibitory action of furazolidone [8, 9]. In an attempt to explain the basis of the inhibition of DNA biosynthesis, it was found that the drug underwent metabolic activation or transformation within the cell and then produced interstrand cross-links in DNA [6, 7]. No other nitrofuran has been shown so far to produce similar lesions to DNA. Formation of such DNA lesions should explain the inhibition of DNA biosynthesis in drug-treated cells. Like mitomycin C, another cross-linking agent, furazolidone exhibited radiomimetic properties, and caffeine exhibited lethal synergism with the drug [3]. The molecular mechanism of action of furazolidone revealed so far indicates that it might exhibit mutagenic and also carcinogenic activities. Furazolidone was shown earlier to induce reverse mutation in bacteria [17, 23].

Furazolidone is one of the few nitrofurans that have effective application in human medicine [4, 26, 28], and hence further investigation on the DNA-damaging and mutagenic activity of this drug should be useful and important. This communication presents the results obtained by us on the furazolidone-induced forward mutation from streptomycin sensitivity (Str-s) to streptomycin resistance (Str-r) of *Vibrio cholerae* cells.

Materials and Methods

Bacterial strain and culture media. The bacterial strain used in this study was *Vibrio cholerae* (classical) strain OGAWA 154. The bacteria were grown in nutrient broth (NB) medium containing 10 g bacto-peptone (Difco), 10 g beef extract (Oxoid), and 5 g NaCl in one liter of deionized water. Viability was assayed by the usual pour plate method on nutrient agar (NA) plates containing 15 g bacto-agar (Difco) in one liter of NB medium. The pH values of the media were adjusted to 8.0. Saline (0.85%) in deionized water was used as a diluent.

Chemicals. Chemically pure furazolidone was obtained as a gift from Smith Kline and French (India) Ltd., India. Streptomycin sulfate was obtained from Sigma Chemical Co., USA. All other reagents used were of analytical grade.

Ultraviolet irradiation. Irradiation of the bacteria by the ultraviolet light obtained from the Philips 15-W Germicidal lamp (254 nm) was done by the method described previously [2, 3].

Assay of forward mutation. Furazolidone-induced, streptomycin-resistant mutants were assayed as follows (Fig. 1). Appropriate amounts of furazolidone, dissolved in saline, were added to 20-ml log-phase bacterial culture in NB (~10⁹ cells/ml), and the culture was then incubated at 37°C for 2 h in the dark. Plating was done on NA plates before (N₁) and after (N₂) the drug treatment so as to assess the viability. The drug-treated bacteria were then washed in saline by centrifugation in the cold, resuspended after 1:20 dilution in 20 ml of fresh NB medium, and incubated at 37°C until the stationary phase was attained to allow proper expression of the mutants to be assayed. Appropriate amounts of this culture were then assayed on NA plates supplemented without (N₃) or with streptomycin (N₄). The spontaneous

* To whom reprint requests should be addressed.
Fig. 1. Protocol describing the method for assaying the furazolidone-induced, streptomycin-resistant mutants. Treatment with furazolidone (dissolved in saline) was effected by adding appropriate amounts of the drug solution directly into the log-phase cultures (~4 h) and incubating the same for 2 h at 37°C, in the dark.

streptomycin-resistant mutants were assayed by treating the bacteria similarly with saline alone (dashed lines, Fig. 1) and plating 0.1-ml aliquots of the stationary phase NB culture onto NA plates supplemented without (N5) or with streptomycin (N6).

Colony-forming units on NA plates containing no (open circles) or appropriate amounts (shaded circles) of streptomycin were counted after 72 h of incubation at 37°C in the dark. Estimations of survival and mutation were done by using the following formulae:

(i) Induced mutation frequency (MF)I = N2/N3
(ii) Spontaneous mutation frequency (MF)s = N6/N5
(iii) Mutation index (MF)I/(MF)s
(iv) Survival (%) = (N2/N0) x 100

Results and Discussion

Induction of mutation of Vibrio cholerae cells to streptomycin resistance by furazolidone was obtained in terms of mutation frequency per 10^7 viable cells. Table 1 presents a comparative picture of mutation induced by furazolidone when the challenging doses of streptomycin were 50 μg/ml and 100 μg/ml. Also, the mutation induced by a fixed dose of ultraviolet light is included in the same table for reference. It appears that the furazolidone-induced mutation frequency against the streptomycin level of 50 μg/ml was in general somewhat higher than that obtained against the antibiotic level of 100 μg/ml. Furazolidone appeared to be equally if not more effective than ultraviolet light in producing Str-r mutants of V. cholerae cells at the dose levels producing almost equal or comparable lethality.

Since most authors have experimented at the challenging dose level of 100 μg streptomycin/ml, the mutation of V. cholerae cells to Str-r with this challenging dose was studied with different doses of furazolidone. In this case the mutation index (MF/I/MF)s increased with increasing drug concentration up to about 7.0 μg/ml and thereafter exhibited a decline (Fig. 2). The maximum value of mutation index obtained was between 8 and 10. The viability of the cells decreased at a faster rate after an initial shoulder.

The question of significance of the mutation of furazolidine-treated cells to streptomycin resistance over the spontaneous mutation level of the same cells was then investigated statistically (t-test). For this purpose the drug-induced mutation frequency and the corresponding spontaneous mutation frequency obtained during each set of experiments were subjected to student’s t-test [24]. The t values were calculated and, taking account of the corresponding degrees of freedom, the probability values (P) were obtained from the relevant table [29]. The difference between the furazolidone-induced mutation frequency and the spontaneous mutation frequency was significant at a level better than 0.1% (P < 0.001) for all doses of furazolidone used, except that the significance was only better than 0.5% (0.005 > P > 0.001) when the drug concentration was 0.5 μg/ml. Variance analysis [24] was performed on induced mutation data vis-à-vis the data on spontaneous mutation to assess the significance of dose-dependent mutation. The F value in the variance ratio test was calculated to be 11.68, when the greater variance estimate had 7