EDMONDS POLYTOPES AND WEAKLY HAMILTONIAN GRAPHS

Václav CHVÁTAL
Université de Montréal, Montréal, Canada

Received 23 February 1972
Revised manuscript received 8 March 1973

Jack Edmonds developed a new way of looking at extremal combinatorial problems and applied his technique with a great success to the problems of the maximal-weight degree-constrained subgraphs. Professor C. St. J.A. Nash-Williams suggested to use Edmonds’ approach in the context of hamiltonian graphs. In the present paper, we determine a new set of inequalities (the “comb inequalities”) which are satisfied by the characteristic functions of hamiltonian circuits but are not explicit in the straightforward integer programming formulation. A direct application of the linear programming duality theorem then leads to a new necessary condition for the existence of hamiltonian circuits; this condition appears to be stronger than the ones previously known. Relating linear programming to hamiltonian circuits, the present paper can also be seen as a continuation of the work of Dantzig, Fulkerson and Johnson on the traveling salesman problem.

0. Notation

As in [6], we denote the “floor of x” (that is, the greatest integer k with \(k \leq x \)) by \(\lfloor x \rfloor \) and the “ceiling of x” (that is, the smallest integer \(k \) with \(k \geq x \)) by \(\lceil x \rceil \).

If \(V \) is a set, we define \([V] = \{ A \subset V : |A| = 2 \} \). A graph is an ordered pair \(G = (V, X) \), where \(V \) is a set and \(X \subset [V] \). All the graph-theoretical definitions not given here can be found in [5]. A graph is \(n \)-cyclable if, given any set \(S \subset V \) with \(|S| = n \), there is a cycle passing through all points of \(S \). A graph is \(t \)-tough if, for each set \(S \subset V \), the \(S \)-deleted subgraph \(G \setminus S \) has at most \(\max\{t^{-1}|S|, 1\} \) components (see [1]). If \(T, W \) are arbitrary sets, we define

\[
[T, W] = \{ A : |A| = 2, A \cap T \neq \emptyset, A \cap W \neq \emptyset \}.
\]
For a fixed graph \(G = (V, X) \) and sets \(T, W \subseteq V \), we set \(q(T) = |X \cap [T]| \) and \(q(T, W) = |X \cap [T, W]| \). The subgraph \((T, X \cap [T]) \) induced by \(T \) will be denoted by \(G(T) \); the number of components of \(G(T) \) will be denoted by \(k(T) \).

If \(V \) is a set, we denote by \(\exp^* V \) the set of all proper nonempty subsets of \(V \). We denote by \(\mathbb{N} \) the set of all nonnegative integers. If \(f \) is a real-valued function defined on \(S \), then we write \(f \cdot T \) rather than \(\Sigma \{f(x): x \in S \cap T\} \).

1. Edmonds polytopes

Let us begin with a set of inequalities

\[
\sum_{i=1}^{n} a(i, j) x(i) \leq b(j) \quad (j = 1, 2, ..., m) \tag{1}
\]

\((a(i, j) \text{ and } b(j) \text{ being real numbers})\) which determine a bounded nonempty subset of the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \). Then the set \(M \) of the lattice points of \(\mathbb{R}^n \) (i.e., the points \(x = (x(1), x(2), ..., x(n)) \), where the \(x(i) \)'s are integers) satisfying (1) is finite. Its convex hull is a polytope which can be characterized by a new set of inequalities

\[
\sum_{i=1}^{n} a^*(i, j) x(i) \leq b^*(j) \quad (j = 1, 2, ..., m^*) \tag{2}
\]

The polytope determined by (1) will be denoted by \(P \), the polytope determined by (2) will be denoted by \(E(P) \).

Next consider the following couple of problems:

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} c(i) x(i), \quad \text{subject to } x \in M, \tag{3} \\
\text{maximize} & \quad \sum_{i=1}^{n} c(i) x(i), \quad \text{subject to } x \in E(P). \tag{4}
\end{align*}
\]

Since the vertices of \(E(P) \) come from \(M \), and \(M \) is a subset of \(E(P) \), we have

\[
\max_{x \in M} \{\Sigma c(i) x(i)\} = \max_{x \in E(P)} \{\Sigma c(i) x(i)\}.
\]