\(\mathfrak{C} \)-Extensions of Topological Spaces II

By

T. Thrivikraman, Kerala, India

(Received 4 May 1972, in revised form 15 March 1973)

Abstract

In this paper, we obtain analogues, in the situation of \(\mathfrak{C} \)-extensions, of Magill's theorem on lattices of compactifications. We define an epireflective subcategory of the category \(T_2 \) of all Hausdorff spaces to be admissible (respectively finitely admissible) if for any \(\mathfrak{C} \)-regular space \(X \), every Hausdorff quotient of \(\beta_{\mathfrak{C}}X \) which is Urysohn on \(\beta_{\mathfrak{C}}X - X \) (respectively which is finitary on \(\beta_{\mathfrak{C}}X - X \)) and which is identity on \(X \), has \(\mathfrak{C} \). We notice that there are many proper epireflective subcategories of \(T_2 \) containing all compact spaces and which are admissible; there are many such which are not admissible but finitely admissible. We prove that when \(\mathfrak{C} \) is a finitely admissible epireflective subcategory of \(T_2 \), then the lattices of finitary \(\mathfrak{C} \)-extensions of two spaces \(X \) and \(Y \) are isomorphic if and only if \(\beta_{\mathfrak{C}}X - X \) and \(\beta_{\mathfrak{C}}Y - Y \) are homeomorphic. Further if \(\mathfrak{C} \) is admissible, then the lattices of Urysohn \(\mathfrak{C} \)-extensions of \(X \) and \(Y \) are isomorphic if and only if \(\beta_{\mathfrak{C}}X - X \) and \(\beta_{\mathfrak{C}}Y - Y \) are homeomorphic.

0. Preliminaries: For the sake of completeness, we give below certain fundamental definitions. For further details, see \([1]\) and any elementary book on category theory.

A subcategory \(\mathcal{B} \) of a category \(\mathcal{A} \) is said to be full if for every \(C, D \) in \(\mathcal{B} \), \(\text{Hom}_{\mathcal{A}}(C,D) = \text{Hom}_{\mathcal{B}}(C,D) \). \(\mathcal{B} \) is said to be replete, if every object \(D \) in \(\mathcal{A} \) which is isomorphic to some object \(C \) in \(\mathcal{B} \) is an object of \(\mathcal{B} \). By a subcategory, we mean a full replete subcategory.

A subcategory \(\mathcal{B} \) of a category \(\mathcal{A} \) is said to epireflective, if for every object \(A \) in \(\mathcal{A} \), there exists an object \(\beta A \) in \(\mathcal{B} \) and a unique epimorphism \(\beta \) in \(\text{Hom}(A,\beta A) \), such that for any \(C \) in \(\mathcal{A} \) and any morphism \(f \) in \(\text{Hom}(A,C) \), there exists a unique \(g \) in \(\text{Hom}(\beta A,C) \) such that \(g \circ \beta = f \). We call \(\beta A \) to be the reflection of \(A \) in \(\mathcal{B} \). Also \(\beta \) is called the reflector of \(A \) in \(\mathcal{B} \).

A space \(Y \) is said to be an \(\mathfrak{C} \)-extension of a space \(X \), if \(X \) is dense in \(Y \) and \(Y \) belongs to \(\mathfrak{C} \).
1. **Convention**: \(\mathcal{E} \) is an epireflective subcategory of the category \(T^2 \) of all Hausdorff spaces. Spaces \(X \) considered in this paper are \(\mathcal{E} \)-regular; i.e., they are subspaces of products of spaces in \(\mathcal{E} \). We assume further that \(X \) does not belong to \(\mathcal{E} \). (When \(X \) itself has \(\mathcal{E} \), the situation is trivial and so need not be considered here.) It is also assumed that \(X \) is open in the largest \(\mathcal{E} \)-extension \(\beta_{\mathcal{E}}X \). Further we assume that \(\beta_{\mathcal{E}}X \) is normal.

Note: The last two conditions are a bit strong. However when \(\mathcal{E} \) is the category of compact \(T^2 \)-spaces and \(X \) is locally compact, these conditions are satisfied. Certain other situations where these conditions are satisfied have been studied by the author in [6].

2. **Notations**: \(F_\beta(X) \) denotes the family of Hausdorff quotients of \(\beta_{\mathcal{E}}X \), which are identity on \(X \) and which have only a finite number of multiple points.
\(U_\beta(X) \) denotes the family of all Hausdorff quotients of \(\beta_{\mathcal{E}}X \), which are identity on \(X \) and which are Urysohn on \(\beta_{\mathcal{E}}X - X \). \(\mathcal{E}_\beta(X) \) denotes the family of Hausdorff quotients of \(\beta_{\mathcal{E}}X \) which are identity on \(X \).

Note: \(F_\beta(X) \subset U_\beta(X) \subset \mathcal{E}_\beta(X) \).

3. **Definition**: An epireflective subcategory \(\mathcal{E} \) of \(T^2 \) is said to be admissible (respectively finitely admissible), if for any space \(X \), every member of \(U_\beta(X) \) (respectively \(F_\beta(X) \)) has \(\mathcal{E} \).

Note: Trivially “admissible” implies “finitely admissible”.

4. **Examples**

(i) Compactness is admissible.

(ii) The property \(\mathcal{C} \) — the closure of any subset of cardinality \(m \) is compact (\(m \) any chosen infinite cardinal) is epireflective and imaginative (i.e., any continuous image inherits the property) and therefore admissible. Clearly when \(m \) is infinite, it is a proper subcategory of \(T^2 \) (cf. [2]).

(iii) Let \(X \) be a topological space. We say that a net \(S \) in \(X \) is weakly open- (or closed-) universal, if given any open set \(A \) in \(X \), \(S \) is either eventually in \(A \) or eventually in \(cA \). The space \(X \) is said to be an \(\alpha' \)-space, if every \(\sigma \)-directed weakly open-universal net in it is convergent; to be an \(\alpha'' \)-space, if every \(\sigma \)-directed universal net in it is convergent. The class of \(\alpha' \)-spaces as well as that of \(\alpha'' \)-spaces is an epireflective, finitely admissible subcategory of \(T^2 \). For further details, see [5].