A GRAPHIC METHOD FOR DETERMINING THE ACTIVITY OF IRRADIATED SPECIMENS

Slavcho Popov
Laboratory for the Application of Radioisotopes in Engineering, Sofia
Translated from Atomnaya Energiya, Vol. 11, No. 1, pp. 61-65, July, 1961
Original article submitted February 3, 1961

If 1 g of material (at. wt. \(A_{at} \), activation cross section \(\sigma \)) is irradiated in a stream of thermal neutrons \(\Phi = 10^{13} \) neutrons/cm\(^2\)-sec for a period of time \(t \), then after a period of time \(t_1 \) between the moment the irradiation was stopped to the moment when the customer receives the irradiated material, the total activity of the specimen \(A \) will be fairly accurately determined by the following formula:

\[
A = 163 \frac{p\sigma}{A_{at}} (1 - e^{-\frac{0.693t}{T_{1/2}}}) e^{-\frac{0.693t_1}{T_{1/2}}},
\]

where \(p \) is the relative content of activating isotope in the chemical element; \(T_{1/2} \) is the half-life of the isotope obtained due to irradiation; \(e \) is the base of natural logarithms. Since for any isotope the values \(k = 163 \frac{p\sigma}{A_{at}} \) and \(m = \frac{0.693}{T_{1/2}} \) are constant, then formula (1) can be expressed in the form

\[
A = k(1 - e^{-mt}) e^{-mt_1},
\]

hence it follows that \(A \) is a function of two variables: \(A = f(t,t_1) \).

This function is a spatial curve which can be represented stereometrically in a spatial coordinate system (see Figs. 1-5). The coordinate axes of such a system have logarithmic scales; all three variables (activity \(A \), time of activation \(t \) and time of decay \(t_1 \)) change over a fairly wide range. Thus, the scales of times of activation and decay cover a range of times 1 to 100,000 min, i.e., from 1 min to almost 70 days.

Fig. 1. The function \(A = f(t,t_1) \) for the \(W^{187} \) isotope.

From the People's Republic of Bulgaria.
With a new time of activation and hence a new time of decay we obtain an activity which for each separate isotope will depend on the numerical value of p, A, T_2, and o. Calculations of the activity from formula (2) show that the values of activity under these conditions change over a fairly wide range. For this reason the origin of the coordinate axis A is chosen so that the graphical representation of the function $A = f(t, t_1)$ for any isotope is within the limits of coordinates for the values $A \approx 10^{-6}$ C. Under these conditions the values of activity of only some isotopes (gold, iridium, etc.) can reach the maximum value ($\approx 10^3$ C). Consequently, the value of the activity A changes from 10^{-6} to 10^3 C, and it is thus essential that the axis of the coordinates of activity A have a logarithmic scale.

We will try to solve two problems. We will answer the question of the first problem: what is the activity of 1 g of tungsten at any moment of time if it is known that the values of t and t_1 change between 1 and 100,000 min? When tungsten is irradiated by a stream of thermal neutrons two isotopes are formed: W^{187} and W^{185}. In Figs. 1 and 2 the relationship $A = f(t, t_1)$ is given for these isotopes in a system of spatial coordinates.

The problem is solved graphically in the following way. A sheet of transparent paper is placed on Fig. 1 and a pencil is used to draw the contours of the spatial coordinate system and also a graph of the function $A = f(t, t_1)$ for the W^{187} isotope. The contours of the graph of the function for the W^{185} isotope are then transferred to the obtained

Fig. 2. The function $A = f(t, t_1)$ for the W^{185} isotope.

Fig. 3. Combined graph of the function $A = f(t, t_1)$ for the isotopes W^{187} and W^{185}.