On the Eigenvalues of the Matrix Pencil $A + \mu B$

By H.G. Othmer and L.E. Scriven, Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA

1. Introduction

Only in very special cases can the eigenvalues of the matrix pencil $A + \mu B$ be related to those of A and B separately. For example if A and B commute they can be reduced to triangular form by one and the same similarity transformation and the eigenvalues of $A + \mu B$ are $\alpha_i + \mu \beta_i$, where α_i and β_i are the eigenvalues of A and B, respectively, ordered in the appropriate way [8]. But in general no simple relationship exists and repeated computation is required to determine the eigenvalues when the parameter μ is varied. Herein are reported results that simplify parametric studies of the eigenvalues as μ varies when A and B are fixed; some applications are described in [1], [5] and [6].

The objective can be explained with concepts from the classical theory of algebraic invariants [2]. If a scalar-valued function f of one or more $n \times n$ matrices A, B, C, \ldots remains unchanged when A, B, C, \ldots are transformed by any arbitrary similarity transformation, then f is said to be a scalar invariant of A, B, C, \ldots with respect to the group $GL(n)$ of invertible linear transformations. Moreover, if f is a polynomial in the elements of A, B, C, \ldots, then there exists a finite set of invariants of A, B, C, \ldots, the so-called integrity basis, such that f can be expressed as a polynomial in these invariants [2], [10]. Clearly the determinant $d(A, B, I) = |\lambda I - A - \mu B|$ is a polynomial scalar invariant of A, B and I and can consequently be expressed as a polynomial in the invariants of A, B and I. Our purpose here is to determine what number of invariants from an integrity basis is required for the representation of $d(A, B, I)$, and hence of the eigenvalues λ, and to display these invariants for a number of cases.

Integrity bases for scalar-, vector- and tensor-valued functions have received much attention in the literature on continuum mechanics but the results are always obtained for three-dimensional space and usually only for the orthogonal group [7], [8]. Moreover, the invariants have been obtained by enumerating possible cases and no independent means of predicting the total number of invariants has been available.

1) Present affiliation: Department of Mathematics, Rutgers University, New Brunswick, N.J. 08903 USA.
2. Determination of the Number of Invariants

Let \(A \) and \(B \) be arbitrary \(n \times n \) matrices over the complex field and let \(\mu \) be an arbitrary complex number. The eigenvalues of \(C = A + \mu B \) satisfy the characteristic equation

\[
|\lambda I - C| = 0 = \lambda^n + c_1(\mu)\lambda^{n-1} + \cdots + c_n(\mu)
\]

where \(c_k(\mu) \) is equal to \((-1)^k\) times the sum of the principal minors of order \(k \) of \(C \). Because \(|\lambda I - C| \) is an invariant of \(\lambda I - C \) with respect to \(GL(n) \) the coefficients \(c_k(\mu) \) and the eigenvalues \(\lambda \) are also invariants of \(\lambda I - C \) with respect to \(GL(n) \). In the following section we derive expressions for the \(c_k(\mu) \) in terms of the invariants of \(A \) and \(B \) and of their products. Here we determine the number of independent invariants on which the \(c_k(\mu) \) depend.

The \(c_k(\mu) \) can alternatively be expressed in terms of the traces of the first \(n \) powers of \(C \). The definitions

\[
t_k^{C} \equiv (-1)^k c_k(\mu) \quad (1)
\]

and

\[
T_k^{C} \equiv \text{trace } C^k = \text{trace}(A + \mu B)^k \quad (2)
\]

lead to the formulas [4]

\[
c_0 = 1 \quad \text{and for } k \geq 1
\]

\[
c_k(\mu) = (-1)^k t_k^{C} = -\frac{1}{k} \sum_{i=1}^{k} c_{k-i} T_i^{C}. \quad (3)
\]

From (2) and (3) it follows that the coefficients \(c_k(\mu) \) are polynomials of degree \(k \) in \(\mu \), the coefficients of which are the traces of products of \(A \) and \(B \) of degree \(k \) or less. Therefore the number of invariants of \(A, B \) and their products which appear in each \(c_k(\mu) \) is given by the total number of invariants in the sequence

\[
T_1^{C}, \ldots, T_{k-1}^{C}, T_k^{C}.
\]

Furthermore, because all invariants that appear in the first \(k-1 \) coefficients also appear in \(c_k(\mu) \), only the latter need be considered.

Consider the term

\[
T_k^{C} = \text{trace}(A + \mu B)^k = \sum_{s=0}^{k} \mu^s \text{trace} \left\{ \begin{array}{ll} A & B \\ k-s & s \end{array} \right\}
\]

where the bracket \(\left\{ \begin{array}{ll} x & y \\ p & q \end{array} \right\} \) in the noncommutative variables \(x \) and \(y \) denotes the sum of all possible products of \(p \) \(x \)'s and \(q \) \(y \)'s. (For example, \(\left\{ \begin{array}{ll} x & y \\ 2 & 1 \end{array} \right\} = x^2 y + xy x + y x^2 \) [11].) Even if \(AB \neq BA \), still \(T_1^{AB} = T_1^{BA} \), and in general all products of \(A \) and \(B \) of the form

\[
A^{\sigma_1} B^{\gamma_1} A^{\sigma_2} B^{\gamma_2} \cdots A^{\sigma_k} B^{\gamma_k}, \sigma_1 + \cdots + \sigma_k + \gamma_1 + \cdots + \gamma_k = k
\]