THE ΛN INTERACTION AND STRUCTURES OF THE $^{16-18}$O HYPERNUCLEI

T. Motoba

Laboratory of Physics, Osaka Electro-Communication University, Neyagawa, Osaka 572, Japan

The shell model without the nuclear centre-of-mass spuriousity is applied to 16,17,18O isotopes, predicting the bunched and dense hypernuclear energy levels. The (K^-, π^-) reaction cross sections are calculated at several angles with the $\theta = 0^\circ$ ones being in good agreement with the experimental data on 16O and 18O. The realistic ΛN effective interaction derived on the basis of the Nijmegen Model-D is employed and the $\Lambda N J = 0^+$ pairing correlation is found to be repulsive, which is reflected in the 18O$(K^-, \pi^-)_\Lambda^{18}$O excitation function.

1. INTRODUCTION

In addition to the p-shell hypernuclei [1-3], the sd-shell ones attract spectroscopic interests as well, because the (K^-, π^-) reactions provide the information of the excited states in 16O [4] and 18O [5], for example, and because we can therefore study properties of the ΛN interaction in these hypernuclear systems in more detail. Furthermore the experimental information will be supplemented in near future through (π^+, K^+) reactions, stopped K^- absorption reactions, etc. Thus the shell model analyses of the 16,17,18O hypernuclei have been made here in relation to the properties of the realistic ΛN effective interaction.

2. REPULSIVE PROPERTY OF THE ΛN PAIRING CORRELATION

We use the realistic YNG(ΛN) effective interaction [6], which is derived on the basis of the Nijmegen OBE Model-D [7], of the three-range Gaussian form:

\begin{align}
\nu^J_N(r; K_F) &= \sum_{i=1}^{3} \left(a_i + b_i K_F + c_i K_F^2 \right) \exp \left(-\frac{r}{\beta_i} \right) , \\
\beta_i &= 0.5, 0.9, 1.5 \text{ fm}
\end{align}

where the nuclear Fermi momentum $K_F = 1.1 \text{ fm}^{-1}$ is adopted. This effective central interaction can reproduce the observed features of the light Λ-hypernuclei with proper parameter values [8].

A remarkable property we have found is that the $(J_N^\Lambda J_N^\Lambda) J = 0^+$ pairing correlation is repulsive. Some typical matrix elements within the sd-shell are displayed in fig. 1. For comparison we show the corresponding NN matrix elements of $\text{H} - \text{N} - \text{Y}$ force $\nu_{NN}(r)$ which simulates the G-matrix derived from the OPEG potential [9]. The ΛN positive pairing comes from the fact that the attraction at the outer region of the ΛN potential is fairly weak and short-range (2π-exchange) in contrast to the

*) Presented at the symposium "Mesons and Light Nuclei", Bechyně, Czechoslovakia, May 27—June 1, 1985.
NN case, and hence readily compensated by the repulsive core effect. This balance is seen in the behaviour of the AN reduced matrix element $\langle nl = 0 | v(r) | nl = 0 \rangle$ displayed in fig. 2., where (nl) denotes the relative harmonic oscillator state $N_{rel} = 2n + l$. The increase of n corresponds to the higher $A - N$ relative momentum, or increase of the effect of inner core repulsion. The difference between the AN and NN cases is very clear, since in the former the important contributions are positive except at $n = 0$, while they are negative and large in the latter. It is thus interesting to search for an evidence of the positive AN pairing in the (high-lying) excited states of hypernuclei, e.g., the $[(sd)^1_A (sd)^1_Y]$ two-particle dominant states in $^{18}_A O$.

3. SHELL MODEL FRAMEWORK

We include the core-excited states involving the 1-hole configurations, since the (K^-, π^-) reaction populates the “one-neutron-hole states” to produce a Λ particle. Thus the $j-j$ coupling shell model spaces for $^{16,17,18}_O O$ with respect to the $^{16}_O O$ closed core are $[(0s, p)_{N}^{-1} j_{N}^{1}]$, $[(0s, p)_{N}^{-1} (sd)_{s}^{1} j_{s}^{1}]$, and $[(sd)_{s}^{1} j_{s}^{1}]$ +