Some Remarks on the Elastically Supported Membrane

By Gérard A. Philippin, Cornell University, Ithaca, N.Y., USA

I. Introduction

The problem of an elastically supported membrane has recently received much attention in the literature, see for instance [1], [8]. In [5], [7], [9], gradient estimates for the first eigenfunction u are obtained by an indirect use of Hopf's first [2] and second [3] principles on the function $|\text{grad } u|^2 + \lambda_1 u^2$. In this paper, we obtain additional results by applying these Hopf's principles to the functions $|\text{grad } u|^2 u^{-2}$ and $|\text{grad } v|^2 u^{-2}$ which have already been considered for harmonic functions by Payne and Philippin in [4]. In the latter case in which v is the second eigenfunction of a free membrane we are led to a comparison between the eigenvalues corresponding to the eigenfunctions u and v.

Throughout this paper the boundary ∂D of the vibrating membrane D is assumed to be a $C^{2+\varepsilon}$ bounded surface in \mathbb{R}^N, so that the Helmholtz equation holds on ∂D. However this assumption can be relaxed in most cases. We do not attempt here to determine the minimum smoothness requirement on ∂D.

II. Derivation of Maximum Principles

We consider the problem of an elastically supported membrane,

\begin{align*}
\Delta u + \lambda_1(x)u &= 0 \quad \text{in } D, \\
\frac{\partial u}{\partial n} + \alpha(s)u &= 0 \quad \text{on } \partial D.
\end{align*}

(2.1)

Here Δ is the Laplace operator, $\partial/\partial n$ denotes differentiation with respect to the outward normal direction of ∂D, and $\alpha(s)$ is a given nonnegative function defined on the boundary ∂D. u is the first eigenfunction, and $\lambda_1(x)$ is the corresponding eigenvalue.

We define the function

$$
\Phi = \frac{u_x u_{xi} u^2}{u^2} = \frac{q^2}{u^2},
$$

(2.2)

1) This research was supported by the Swiss Nationalfonds.

2) Present address: Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.
where \(u_u u_u\) is the square of the gradient of \(u\), also abbreviated \(q^2\). From the generalized maximum principle (see [6] pp. 72–73), we know that \(\Phi\) takes its maximum value on \(\partial D\). This result will now be sharpened and extended by means of the following:

Lemma 1. The function \(\Phi\) defined in (2.2) satisfies the following differential inequality:

\[
\Delta \Phi = \frac{2(\beta - 1)\Phi_{,k} u_{,k}}{u} \geq \frac{2\lambda_2^2(\alpha)}{N} + \frac{4\lambda_1(\alpha)}{N} (\beta + 1)\Phi

+ 2\Phi^2 \left\{ \frac{1}{N} (\beta + 1)^2 - \beta^2 \right\} \tag{2.3}'
\]

where \(\beta\) is an arbitrary real parameter, and \(N\) is the dimension of the considered euclidean space.

Proof. We denote partial differentiation by a comma followed by one or two indices, and adopt the summation convention on repeated indices. On differentiating (2.2), we have

\[
\Phi_{,k} = \frac{2u_{,ik} u_{,i}}{u^2} - \frac{2q^2 u_{,k}}{u^3} = \frac{2u_{,i}^2}{u^2} w_{ik}, \tag{2.4}
\]

with

\[
w_{ik} = u_{,ik} + \frac{\beta q^2}{u} \delta_{ik} - (1 + \beta) \frac{u_{,i} u_{,k}}{u}, \tag{2.5}
\]

where \(\beta\) is an arbitrary real parameter and \(\delta_{ik}\) is the Kronecker symbol. Differentiating again, we obtain

\[
\Delta \Phi = \frac{2u_{,ik} u_{,ik}}{u^2} - \frac{8u_{,ik} u_{,i} u_{,k}}{u^3} + \frac{6q^4}{u^4}. \tag{2.6}
\]

By using (2.5), (2.1), and (2.2), the quantity \(u_{,ik} u_{,ik}/u^2\) may now be expressed as follows:

\[
u_{,ik} u_{,ik} = \frac{w_{ik} w_{ik}}{u^2} = \left\{ (N - 1) \beta^2 + 1 \right\} \Phi^2 + 2\lambda_1(\alpha) \beta \Phi

+ 2(1 + \beta) \frac{u_{,ik} u_{,i} u_{,k}}{u^3}, \tag{2.7}
\]

where \(w_{ik} w_{ik}\) can be estimated in the following way:

\[
N w_{ik} w_{ik} \geq (w_{ii})^2 = \lambda_2^2(\alpha) u^2 + [\beta(N - 1) - 1]^2 \frac{q^4}{u^2}

- 2[\beta(N - 1) - 1] \lambda_1(\alpha) q^2. \tag{2.8}
\]