Proof. Since K forms a ring, it follows that for arbitrary $u \in \text{Re } A$ and real number λ we have $(\lambda u)^2 = \lambda^2 u^2 \in K \subset \log |A^{-1}|$. In other words, the function $u^2 \in \log |A^{-1}|$ is such that μu^2 also belongs to $\log |A^{-1}|$ for arbitrary $\mu > 0$. By the lemma we have $u^2 \in \text{Re } A$, i.e., $\text{Re } A$ forms an algebra. By Wermer's theorem we have $A = \mathcal{C}(X)$.

We can prove the following theorem in exactly the same manner by using the appropriate results of Bernard.

THEOREM 2. Let A be a uniform algebra on a metrizable compactum X. If for an arbitrary function $u \in \text{Re } A$ its modulus $|u|$ belongs to $\log |A^{-1}|$, then $A = \mathcal{C}(X)$. In particular, the function $\varphi(t) = |t|$ can act on $\log |A^{-1}|$ if and only if $A = \mathcal{C}(X)$.

LITERATURE CITED

MODULI OF CONTINUITY OF FUNCTIONS, DEFINED ON A ZERO-DIMENSIONAL GROUP

A. I. Rubinshtein

UDC 517.5

It is shown that the condition $\lim_{|t| \to 0} \omega(t) = \infty$ is a criterion of modulus of continuity in the spaces $C(G)$, $L(G)$, and $L^2(G)$ of functions defined on a zero-dimensional compact Abelian group G.

As we know, the criterion of modulus of continuity in the spaces $C(R)$ and $C(T)$ of continuous functions on the line and the circle, respectively, was indicated by Nikol'skii [1] as early as 1946. Besov and Stechkin have found in [2] necessary and sufficient conditions for modulus of continuity in the spaces $L^2(R)$ and $L^2(T)$, which turn out to be essentially different from Nikol'skii's conditions.

As far as we know, criteria of modulus of continuity in L_p for $p \neq 2, \infty$, and also the criteria of higher moduli of continuity for $p \neq 2$ have not yet been established.

In the present note we will establish simple necessary and sufficient conditions for modulus of continuity in the spaces $C(G)$, $L(G)$, and $L^2(G)$ of functions defined on a zero-dimensional compact Abelian group G (see [3] for all the definitions). These conditions are the same for all the indicated spaces (and obviously for arbitrary $L_p(G)$) and are essentially different from Nikol'skii's conditions as well as from the Besov-Stechkin conditions. Besides this, it is observed that a natural generalization of the higher moduli of continuity for zero-dimensional groups is hardly meaningful, since, e.g., for an arbitrary function from $C(G)$ or $L^2(G)$ the second modulus of continuity is estimated from below and from above by the first.
We can regard a zero-dimensional compact Abelian group \(G \) as the set of sequences \(x = (x_1, \ldots, x_n, \ldots) \), in which \(x_n \) assumes the values 0, 1, \ldots, \(p_n-1 \) (\(p_n \) is a prime) with coordinatewise addition modulo \(p_n \) as the group operation and the topology defined by the basic chain of subgroup-neighborhoods of zero

\[
G = U_0 \supset U_1 \supset \ldots \supset U_n \supset \ldots ,
\]

where \(U_n \) is the set of those \(x \) whose first \(n \) coordinates are zero.

With the aid of the system of subgroups (1) we can define (N. Ya. Vilenkin) for an arbitrary complex-valued function \(f(x) \in L_p(G) \) (i.e., integrable in the \(p \)-th power with respect to the Haar measure) its modulus of continuity \(\omega^p(f) \) as the sequence of numbers

\[
\omega_n^p(f) = \sup_{h \in U_n} \|f(x + h) - f(x)\|_{L_p(G)}, \quad 1 \leq p \leq \infty.
\]

(By definition, \(L_\infty(G) = C(G) \) is the space of continuous functions on \(G \).) An equivalent definition is given by Morgenthaler [4].

It is obvious that

\[
\omega_n^{(p)}(f) > \omega_n^{(p-1)}(f) > \ldots > \omega_n^{(1)}(f) = \omega_n(f), \quad \lim \omega_n^{(p)}(f) = 0.
\]

Here the following theorem is proved.

Theorem. For an arbitrary sequence \(\omega = \{\omega_n\}_{n=0}^\infty \) there exist functions \(f(x) \in C(G) \), \(f_1(x) \in L_1(G) \), and \(f_2(x) \in L_2(G) \), such that

\[
\omega_n^{(p)}(f) = \omega_n^{(1)}(f_1) = \omega_n^{(1)}(f_2) = \omega_n, \quad n = 0, 1, \ldots
\]

Together with (2) this theorem gives a criterion of modulus of continuity in the spaces \(C(G) \), \(L(G) \), and \(L_2(G) \).

The indicated fact is not quite so unexpected if we take into account the fact that Efimov [5] has established the two-sided estimate

\[
E_{m_n}^{(p)}(f) \leq \omega_n^{(p)}(f) \leq 2E_{m_n}^{(p)}(f), \quad 1 \leq p \leq \infty,
\]

where \(E_{m_n}^{(p)}(f) \) is the best approximation of the function \(f(x), x \in G \), in the metric of \(L_p(G) \) by polynomials of order at most \(m_n - 1 \) with respect to a system of character \(X \) (the definition of the numbers \(m_n \) and the system \(X \) is given below).

It is very simple to prove the theorem in the case of \(C(G) \). It is easily seen that the following function is the desired one:

\[
f(x) = \begin{cases} \omega_n & \text{for } x \in U_n - U_{n+1}, \quad n = 0, 1, \ldots, \\ 0 & \text{for } x = 0. \end{cases}
\]

Indeed, an arbitrary element \(x \in G - U_n \) can be represented in the form \(x = y + h^{(n)} \), where \(h^{(n)} \notin U_n \), and \(y \in U_n \). Therefore, for \(h \in U_n \) the sum \(x + h \) belongs to the same coset \(U_n + h^{(n)} \) to which \(x \) belongs. By virtue of (5) the function \(f(x) \) is constant on any such coset if \(h^{(n)} \neq 0 \). Therefore, \(f(x + h) - f(x) = 0 \) for \(x \in G - U_n; h \in U_n \). On the other hand, \(|f(x + h) - f(x)| \leq \omega_n \), for \(x \) and \(h \) from \(U_n \); moreover, \(f(h) - f(0) = \omega_n \) for \(h \in U_n - U_{n+1} \). These relations prove the equality \(\omega_n(f) = \omega_n \). In a conversation with the author N. Ya. Vilenkin communicated that the example of the function (5) was known to him, but was not published anywhere.

A number of notions are needed for constructing the function \(f_{1,2}(x) \). Let us denote by \(X \) a countable orthonormal (with respect to the Haar measure) system of characters (in the sense of Pontryagin) of the group \(G \), i.e., a system of continuous (in the topology of \(G \)) complex-valued functions \(\chi(x) \) whose moduli are equal to one and which satisfy the functional equation \(\chi(x + y) = \chi(x) \cdot \chi(y) \). The system \(X \) is an Abelian group with respect to the operation of pointwise multiplication. As we know (see, e.g., [6]), \(X \) is the limit of a system of extending subgroups \(X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots \), where \(X_n \) has the finite order \(m_n = p_1 \cdot p_2 \cdot \ldots \cdot p_n (m_0 = 1) \) and is the annihilator of the subgroup \(U_n \), i.e., the equality \(\chi(x) = 1 \) is valid for arbitrary \(x \in U_n \) and \(\chi \in X_n \). Let us introduce a numbering in \(X \) as follows.

Choosing an arbitrary character in \(X_n - X_{n-1} \), we assign it the number \(m_n - 1 \). For an arbitrary number \(n \geq 1 \), represented in the form

\[
206
\]