The Decay of 8.7 min 237Pa

N. Kaffrell, N. Trautmann and R. Denig

Institut für Kernchemie der Universität Mainz, Germany

Received September 10, 1973

Abstract. The beta and gamma radiations of 237Pa have been investigated employing semiconductor and scintillation spectrometers and coincidence techniques. Sources of 237Pa were obtained after bombardments of 238U with bremsstrahlung and 14-MeV neutrons and subsequent chemical separation. From the total of 18 γ-rays following the decay of 8.7 ± 0.2 min 237Pa 17 transitions, representing 99.9% of the γ-ray intensity, could be placed in a level scheme of 237U. A Q_β-value of 2.25 ± 0.1 MeV has been determined.

1. Introduction

Excited levels of 237U have recently been studied in detail by means of various charged particle reactions [1-3] like 236U(d, p), 238U(3He, α) and 239U(d, t). Some low energy levels have also been found following the α-decay [4-6] of 241Pu. However, only scanty information has been available from the β^--decay of 237Pa into 237U. After bombardment of uranium with 190-MeV deuterons Crane and Iddings [7] found in addition to a large excess of 235Pa, a 10.5 min activity which they assigned to 237Pa produced via a 238U(d, $2p$ n) reaction. The mass assignment and the half-life value were determined by repeated milking of the 237U daughter activity. Takahashi and Morinaga [8], however, reported a value of 39 min for the half-life of 237Pa. The activity was produced in a (γ, p) reaction irradiating 238U with 25-MeV bremsstrahlung. A decay scheme was also proposed based on β and γ singles and γ-γ-coincidence measurements. In our own investigations [9, 10] we have found a half-life of 9 min for 237Pa. Recently, the experiment of Takahashi and Morinaga [8] was repeated by v. Egidy et al. [11] and they came to the conclusion that 237Pa does not have a half-life of 9 min.

2. Experimental Methods

The activities of 237Pa have been produced by the (n, p n) reaction in bombardments of 238U with 14-MeV neutrons from the Cockcroft-Walton accelerator of this institute; fluxes up to $4 \cdot 10^{10}$ n/cm²/sec were available. As the cross section [12] for the (n, p n) reaction is only 0.23 mb, we tried to get higher intensities by irradiating 238U with 100-MeV bremsstrahlung from the Mainz electron linear accelerator. Unfortunately, in this case we always got a mixture of 237Pa and 236Pa, due to a (γ, p) and (γ, pn) reaction, respectively. As both nuclides have the same half-life of 9 min [9, 10], we carried out additional irradiations at the Gießen electron linear accelerator with a 21-MeV bremsstrahlung spectrum, in order to get pure β and γ singles spectra of 237Pa.

In all cases the protactinium was radiochemically separated from the predominating fission-product activities by partition between diisobutylcarbinol and hydrochloric acid containing complex-forming agents. The chemical separation has been described in more detail elsewhere [12]. Counting samples were prepared by coprecipitation with ferric hydroxide. The first count could be started within 2–3 min after the end of bombardment. Decontamination from short-lived fission products was tested using samples prepared by thermal-neutron irradiations of 235U in the Mainz research reactor. For the half-life measurements the β radiation has been counted with a methane-flow proportional counter. The γ-ray spectra have been recorded with several Ge(Li) detectors of 30 to 40 cc active volume.
and a resolution of 2.1 to 3 keV FWHM at 1333 keV. A 0.45 cc X-ray detector has been available for measuring the low energy part of the γ-ray spectrum and especially for checking the purity of the chemically isolated protactinium samples. The β-ray spectrum has been measured with a 7.5 x 5 cm plastic scintillator. For γ-γ-coincidence experiments two 35 cc Ge(Li) detectors have been used together with a constant fraction coincidence circuit. The measurements were performed in the two dimensional mode up to a maximum of 4096 x 4096 channels. The resolving time of the set-up was about 25 nsec. The coincidence data accumulated on magnetic tapes were analyzed on a CDC 3300 computer. The energy and intensity calibration of the detectors has been described elsewhere [13].

3. Experimental Results

a) Decay Curves

Fig. 1 shows the β-decay curve of the Pa fraction after bombardment of 238U with 14-MeV neutrons measured with a flow counter. After subtraction of 6.75 h 234Pa and 24.2 min 235Pa there remains a 8.7 min component, for which the mass assignment to 237Pa is confirmed by the growth of the daughter product 6.7 d 237U, shown as insert in Fig. 1. The main activity of 234Pa, however, stems from the α-decay of 238U. The strong 2.3 min component [9, 14] belongs to 238Pa from the 238U(n, p) reaction. More accurate values for the half-life of 237Pa were obtained from the decay of characteristic γ-rays, for which two examples are shown in Fig. 2. From these measurements, a half-life of 8.7 ± 0.2 min results for 237Pa.