for any $x > 0$ and all sufficiently large n, where A is an absolute positive constant. By condition (8) we have $a_n = n$ for all sufficiently large n if the constant ϵ is chosen sufficiently small. For these values of n we have $\psi(a_n) \leq \psi(n)$, since the function ψ is nondecreasing. Hence, condition (1) is satisfied with the sum $S_k = \sum_{j=1}^{k} X_j$ replaced by $|S_k|$: therefore, by Theorem 1 we obtain

$$\lim_{n \to \infty} \sup \frac{|S_n|}{a_n} = 1. \quad (11)$$

In the definition of a_n we may choose the number ϵ arbitrarily small, and therefore (9) follows from (11).

We note a corollary of Theorem 2. Suppose that $\{X_n\}$ is a random sequence which is stationary in the broad sense with $EX_n = 0$. If the series $\sum_{j=1}^{\infty} \mu_j$ converges, then

$$S_n = 0 \left(\frac{n \psi(n)}{\log n} \right) \text{ a.s.}$$

for any function $\psi \in \Psi_c$.

Theorem 4 of the work [3] follows from the last assertion.

LITERATURE CITED

2. V. V. Petrov, Sums of Independent Random Variables, Moscow (1972).

INFORMATION IN A SCHEME WITH ADDITIVE NOISE

V. N. Solev

UDC 519.2

A formula is proved expressing the information contained in a stationary, linearly regular, Gaussian process with an independent additive increment relative to the original unperturbed process.

1. Let y and z be stationary, linearly regular, Gaussian processes with discrete or continuous time and spectral densities (s.d.) f_y and f_z, respectively; let

$$x(t) = y(t) + z(t). \quad (1)$$

We shall consider the scheme with the additive "noise" z, i.e., we assume that the processes y and z are independent. In order to eliminate trivial complications, we assume that $Ey(t) = Ez(t) = 0$. If a process $u(t)$, $t \in [\alpha, \beta] \cap I$, is given, we denote by \mathcal{H}_u the complex Hilbert space generated by the quantities $u(t)$, $t \in [\alpha, \beta]$, with scalar product $(\xi, \eta) = \int_{[\alpha, \beta]} \xi(t)\eta(t) dt$ and by \mathcal{U}_u the subspace of the Hilbert space \mathcal{H}_u constructed on the basis of the quantities $u(t)$, $t \in [\alpha, \beta] \cap I$.

We consider the amount of information $\mathcal{J}_t = \mathcal{J}_t(x, y) \{1\}$ contained in the quantities x_t relative to the quantities y_t. It is known that for processes with discrete time

$$\mathcal{I}(x, y) \stackrel{d}{=} \lim_{t \to \infty} \frac{\mathcal{J}_t}{t} = \frac{1}{2\pi} \int_{[\alpha, \beta]} \ln \frac{f_x f_y}{f_x f_y} \left| \int f_x f_y \right| \, dx, \quad (2)$$

where f_{xy} is the mutual spectral density of the pair (x, y),

$$R_{xy}(\tau) \triangleq \mathbb{E} x(t + \tau) \mathbb{E}^* y(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{i\tau \xi} f_{xy} \, d\xi.$$

In our case, that is assuming the independence of the processes y and z, $f_{xy} = f_y$. An analogue of formula (2) in the case where the spectrum of the pair (x, y) is rational has been established in [1]. The general case is considered in [2]. Namely, it was established that if at least one of the processes x or y is weakly regular (the process x is weakly regular if $\sum_{n=1}^{\infty} n \mathbb{E} |x_n|^2 < \infty$ for any $t < \infty$), then for processes with continuous time

$$i(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \ln \left(\frac{f_x f_y}{f_{xy}} \right) \, d\xi.$$

In the present note conditions are found under which there exists the finite limit $\lim_{t \to \infty} \left[J_t - t i(x, y) \right]$ and the value of this limit is computed.

2. Let $x(n)$ be a stationary, linearly regular, Gaussian sequence with s.d. f. We compute the quantity $J_x \triangleq \mathbb{E}(x^{-1}, x^n)$, i.e., the amount of information contained in the "past" of the process x with respect to its "future." Let g be an outer function of the space H^2 of the interior of the disk [3] such that $|g(z)|^2 = f(z)$ almost everywhere on the unit circle. The possibility of such a factorization of the s.d. f follows from the condition of linear regularity of the process x [4]. The following theorem holds.

THEOREM 1. There is the formula

$$J_x = \frac{1}{2\pi} \int_{|\xi|<1} \left| \frac{Q(\xi)}{q(\xi)} \right|^2 \, d\xi = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} |h_k|^2 \chi,$$

where $d\xi$ is Lebesgue measure in the plane, h_k are the Fourier coefficients of the function $\ln f$, $\ln f(\xi) = \sum_{k \in \mathbb{Z}} h_k \chi^n$ ($\ln f \in L^1$ if the process x is linearly regular).

Proof. We denote by P^-, P^+ the orthoprojectors in $\mathbb{X}^{-\infty}$ onto the subspaces $\mathbb{X}^{-\infty}$, \mathbb{X}^∞, respectively. Then since the process x is Gaussian,

$$J_x = J(\mathbb{X}^{-\infty}, \mathbb{X}^\infty) = -\frac{1}{2\pi} \ln \det (E - P^- P^+ P^-),$$

where E is the identity operator. Let $V|\mathbb{X}(n)| = \mathbb{Z}^n$. It is known [4] that the mapping extends to an isometry of $\mathbb{X}^{-\infty}$ onto the L^2 space on the unit circle constructed on the basis of the measure $f \, d\lambda$. The latter space we denote by L^2_f. Let H_f^+, H_f^- be the subspaces of the space L^2_f generated by the functions $\{Z_n, n < 0\}$, $\{Z_n, n \geq 0\}$, respectively, and let P_f^-, P_f^+ be the orthoprojectors in L^2_f onto the subspaces H_f^+, H_f^-. Since $VH^- = H_f^-, VH^+ = H_f^+$, by the isometric property of the mapping V

$$d_f = \det (E - P_f^- P_f^+ P_f^-) = \det (E - P_j P^+ P_j).$$

It was established in [5] that

$$d_f = \exp \left\{ -\frac{1}{4\pi} \int_{|\xi|<1} \left| \frac{Q(\xi)}{q(\xi)} \right|^2 \, d\xi \right\} \exp \left\{ -\sum_{k \in \mathbb{Z}} |h_k|^2 \chi \right\}.$$

This and formulas (5) and (4) imply (3). The proof of the theorem is complete.

Let x be a generalized Gaussian stationary process with continuous time [6], i.e., x is a continuous random functional on the space Φ of infinitely differentiable functions such that

1) the random variables $x(\varphi)$, $\varphi \in \Phi$, are Gaussian;

2) $m_x(\varphi) \triangleq \mathbb{E} x(\varphi) = m_x(\tau_t \varphi)$;

3) $R_x(\varphi, \varphi) \triangleq \mathbb{E} x(\varphi) x(\varphi) = R_x(\tau_t \varphi, \tau_t \varphi)$, where τ_t is the shift operator: $[\tau_t \varphi](s) = \varphi(t + s)$.

We assume that the process x is defined only on the subspace Φ_x of the space Φ distinguished by the condition of finiteness of the quantities $E |x(\varphi)|^2$, $\varphi \in \Phi_x$. Let \mathbb{X} be the complex Hilbert space generated by the quantities $x(\varphi)$, $\varphi \in \Phi_x$, with scalar product $(\xi, \xi') = E \xi \bar{\xi}'$, and let \mathbb{X}_α be the subspace of the space \mathbb{X}.