for any $x > 0$ and all sufficiently large n, where A is an absolute positive constant. By condition (8) we have $a_n \leq n$ for all sufficiently large n if the constant ε is chosen sufficiently small. For these values of n we have $\phi(a_n) \leq \phi(n)$, since the function ϕ is nondecreasing. Hence, condition (1) is satisfied with the sum $S_k = \sum_{j=1}^{k} X_j$ replaced by $|S_k|$: therefore, by Theorem 1 we obtain

$$\lim \sup \frac{|S_n|}{a_n} \leq \varepsilon$$ \hspace{1cm} (11)$$

In the definition of a_n we may choose the number ε arbitrarily small, and therefore (9) follows from (11).

We note a corollary of Theorem 2. Suppose that $\{X_n\}$ is a random sequence which is stationary in the
broad sense with $EX_n = 0$. If the series $\sum |X_j|$ converges, then

$$S_n = 0 \left(\frac{1}{n\phi(n)} \log n \right) a.s.$$

for any function $\phi \in \Psi$.

Theorem 4 of the work [3] follows from the last assertion.

LITERATURE CITED

2. V. V. Petrov, Sums of Independent Random Variables, Moscow (1972).

INFORMATION IN A SCHEME WITH ADDITIVE NOISE

V. N. Solev

UDC 519.2

A formula is proved expressing the information contained in a stationary, linearly regular, Gaussian process with an independent additive increment relative to the original unperturbed process.

1. Let y and z be stationary, linearly regular, Gaussian processes with discrete or continuous time and spectral densities (s.d.) f_y and f_z, respectively; let

$$x(t) = y(t) + z(t).$$ \hspace{1cm} (1)$$

We shall consider the scheme with the additive "noise" z, i.e., we assume that the processes y and z are independent. In order to eliminate trivial complications, we assume that $Ey(t) = Ez(t) \equiv 0$. If a process $u(t)$, $t \in \mathbb{D} \subset \mathbb{R}$, is given, we denote by H_u the complex Hilbert space generated by the quantities $u(t)$, $t \in \mathbb{D}$, with scalar product $(\xi, \eta) = E\xi \overline{\eta}$ ($\xi, \eta \in H_u$) and by $H_\mathbb{D}$ the subspace of the Hilbert space H_u constructed on the basis of the quantities $u(t)$, $t \in \{a,b\} \cap \mathbb{D}$.

We consider the amount of information $J_t = J_t(x,y)$ contained in the quantities x_{t-a} relative to the quantities y_{t-a}. It is known that for processes with discrete time

$$I(x,y) \equiv \lim_{t \to \infty} \frac{1}{t} \int_{-t}^{t} \ln \left| \frac{f_x f_y}{f_{x+y}} \right| d\lambda,$$ \hspace{1cm} (2)$$

where f_{xy} is the mutual spectral density of the pair (x, y),

$$R_{xy}(\tau) \overset{\text{def}}{=} E x(t + \tau) y(t) = \int_{-\infty}^{\infty} e^{i\tau \varphi} f_{xy} \, d\varphi.$$

In our case, that is assuming the independence of the processes y and z, $f_{xy} = f_y$. An analogue of formula (2) in the case where the spectrum of the pair (x, y) is rational has been established in [1]. The general case is considered in [2]. Namely, it was established that if at least one of the processes x or y is weakly regular (the process x is weakly regular if $\tau > 0$ for any $t < \infty$), then for processes with continuous time

$$i(x, y) = \frac{i}{2\pi} \int_{-\infty}^{\infty} \ln \frac{f_{xy}}{f_x f_y} \, d\varphi.$$

(2')

In the present note conditions are found under which there exists the finite limit \[\lim_{t \to \infty} \left[\mathcal{J}_x - ti(x, y) \right] \] and the value of this limit is computed.

2. Let $x(n)$ be a stationary, linearly regular, Gaussian sequence with s.d. f. We compute the quantity

$$\mathcal{J}_x \overset{\text{def}}{=} \mathcal{J}(\mathcal{X}_{-\infty}^{+}, \mathcal{X}_{0}^{+}),$$

i.e., the amount of information contained in the "past" of the process x with respect to its "future." Let g be an outer function of the space H^2 of the interior of the disk [3] such that $|g(z)|^2 = f(z)$ almost everywhere on the unit circle. The possibility of such a factorization of the s.d. f follows from the condition of linear regularity of the process x [4]. The following theorem holds.

THEOREM 1. There is the formula

$$\mathcal{J}_x = \frac{1}{2\pi} \int_{\mathbb{R}} \left| \frac{Q(x)}{Q(z)} \right|^2 \, d\varphi = \frac{1}{2} \sum_k |h_k|^2 \ln,$$

where ds is Lebesgue measure in the plane, h_k are the Fourier coefficients of the function $\ln f$, $\ln f(\varphi) = \sum h_k Z^k$ ($\ln f \in L^1$ if the process x is linearly regular).

Proof. We denote by P^-, P^+ the orthoprojectors in $\mathcal{X}_{-\infty}^{+}$ onto the subspaces $\mathcal{X}_{-\infty}^{+}, \mathcal{X}_{0}^{+}$, respectively. Then [1] since the process x is Gaussian,

$$\mathcal{J}_x = \mathcal{J}(\mathcal{X}_{-\infty}^{+}, \mathcal{X}_{0}^{+}) = -\frac{1}{2} \ln \det \left(E - P^- P^* P^- \right),$$

(4)

where E is the identity operator. Let $\mathcal{X}(n) = \mathcal{X}^n$. It is known [4] that the mapping extends to an isometry of $\mathcal{X}_{-\infty}^{+}$ onto the L^2 space on the unit circle constructed on the basis of the measure $fd\lambda$. The latter space we denote by $L^2_{\mathbb{D}}$. Let H^2_λ, H^2_f be the subspaces of the space $L^2_{\mathbb{D}}$ generated by the functions $\{Z^n, n \leq 0\}, \{Z^n, n \geq 0\}$, respectively, and let P^-_f, P^+_f be the orthoprojectors in $L^2_{\mathbb{D}}$ onto the subspaces H^2_λ, H^2_f. Since $VH^- = H^2_\lambda, VH^+ = H^2_f$, by the isometric property of the mapping V

$$d_f \overset{\text{def}}{=} \det \left(E - P^- P^* P^- \right) = \det \left(E - P^- P^* P^- \right).$$

(5)

It was established in [5] that

$$d_f = \exp \left\{ -\frac{1}{2\pi} \int_{\mathbb{R}} \left| \frac{Q(x)}{Q(z)} \right|^2 \, d\varphi \right\} = \exp \left\{ -\sum_{k=1}^{\infty} |h_k|^2 \ln \right\}.$$

(6)

This and formulas (5) and (4) imply (3). The proof of the theorem is complete.

Let x be a generalized Gaussian stationary process with continuous time [6], i.e., x is a continuous random functional on the space Φ of infinitely differentiable functions such that

1) the random variables $x(\varphi), \varphi \in \Phi$, are Gaussian;

2) $m_x(\varphi) \overset{\text{def}}{=} E x(\varphi) = m_x (\tau_\varphi \varphi)$;

3) $R_x(\varphi, \varphi) \overset{\text{def}}{=} E x(\varphi) \overline{x(\varphi)} = R_x (\tau_\varphi \varphi, \tau_\varphi \varphi)$, where τ_φ is the shift operator: $[\tau_\varphi \varphi](t) = \varphi(t + s)$.

We assume that the process x is defined only on the subspace Φ_n of the space Φ distinguished by the condition of finiteness of the quantities $E|\varphi(x(\varphi))|$, $\varphi \in \Phi_n$. Let \mathcal{X} be the complex Hilbert space generated by the quantities $x(\varphi), \varphi \in \Phi_n$, with scalar product $(\xi, \xi) = E \xi \overline{\xi}$, and let \mathcal{X}_n be the subspace of the space \mathcal{X}.