Further observations are made on the author's earlier paper (Ref. Zh. Mat., 1977, 5A284) dealing with the lattice \mathcal{H} of all subgroups of the full linear group $GL(n,K)$ over a field K that contain the group $D(n,K)$ of diagonal matrices. It is noted, for example, that for an infinite field K all subgroups in \mathcal{H} are algebraic; a subgroup in \mathcal{H} is connected if and only if it is a net subgroup; the lattice of all connected subgroups in \mathcal{H} is isomorphic to the lattice of all marked topologies on n points; any subgroup \mathcal{H} in \mathcal{H} is a semidirect product $\mathcal{H}=A\cdot H_0$ of a maximal connected normal subgroup H_0 of \mathcal{H} and a finite group A of permutation matrices.

Suppose K is an arbitrary field, $G=GL(n,K)$ the full linear group of degree $n \geq 2$ over K, and $D=D(n,K)$ the subgroup of diagonal matrices. Let \mathcal{H} denote the lattice of all intermediate subgroups H, such that $D \leq H \leq G$. It was shown in [1] that this lattice is finite and, if card $K > 3$, does not depend on the field K. In the present note we make a number of additional assertions, mainly without proofs, concerning the subgroups H in \mathcal{H}. Where it is not too complicated we formulate the results for the full linear group over a simple Artinian (or local) ring. The notation and terminology are taken from [1] (see also [2]).

Suppose Λ is a simple ring (not necessarily Artinian). All D-nets of a fixed order n in the ring Λ form a finite lattice. On the other hand, all topologies that can be
introduced on the segment \(I = (1, \ldots, n) \) of the natural sequence also form a lattice under the inclusion relation. We will denote it by \(\Gamma(n) \). To each topology \(T \in \Gamma(n) \) we can associate a \(D \)-net \(\sigma \) of order \(n \), by putting \(\sigma_{ij} = \Lambda \), if the point \(i \) in \(I \) is contained in the closure \(\overline{I} \) of the point \(j \) (in the topology \(T \)), and \(\sigma_{ij} = (0) \) otherwise. It is easy to see that the mapping \(T \mapsto \sigma \) is bijective.

THEOREM 1. Suppose \(n \) is a natural number and \(\Lambda \) an arbitrary simple ring. Then the lattice of all \(D \)-nets in \(\Lambda \) of order \(n \) is isomorphic to the lattice \(\Gamma(n) \) of all topologies on a fixed finite set of \(n \) elements.

If a topology \(T \) satisfies the separation axiom \((T_0) \) then the corresponding net \(\sigma \) has the following property: if \(i \neq j \) at least one of the ideals \(\sigma_{ij} \) or \(\sigma_{ji} \) is zero. To the discrete topology (the only topology on \(I \) satisfying the separation axiom \((T_1') \)) corresponds the \(D \)-net with zero ideals off the main diagonal.

A net \(\omega \) over a simple ring \(\Lambda \) is called a \(U \)-net if for each pair of indices \(i \neq j \) at least one of the ideals \(\omega_{ij} \) or \(\omega_{ji} \) is zero. For a \(U \)-net, in particular, all ideals \(\omega_{ii} \), appearing on the main diagonal, are zero. Any \(U \)-net is similar to a triangular \(U \)-net with zero ideals under the main diagonal. The net group \(G(\omega) \) for a \(U \)-net \(\omega \) is unipotent.

To each \(D \)-net \(\sigma \) in a simple ring \(\Lambda \) we can associate a \(U \)-net \(\omega \) by putting \(\omega_{ij} = (0) \) if \(\sigma_{ij} = \sigma_{ji} = \Lambda \) and \(\omega_{ij} = \sigma_{ij} \) otherwise.

THEOREM 2. Suppose \(\sigma \) is an arbitrary \(D \)-net of order \(n \) in a simple ring \(\Lambda \). Then the net group \(G(\sigma) \) decomposes into a semidirect product

\[
G(\sigma) = L \cdot G(\omega),
\]

where \(\omega \) is the above-mentioned \(U \)-net corresponding to the \(D \)-net \(\sigma \), \(G(\omega) \) is a unipotent normal subgroup of \(G(\sigma) \) and \(L \) is a group that decomposes into a direct product of full linear groups of smaller orders:

\[
L \simeq GL(\kappa_1, \Lambda) \times \cdots \times GL(\kappa_m, \Lambda), \quad \kappa_1 + \cdots + \kappa_m = n.
\]

The decomposition of \(G(\sigma) \) indicated in Theorem 2 can be viewed as an analog of the Levi decomposition well known in the theory of algebraic groups.

A \(D \)-net \(\sigma \) of order \(n \) over a simple ring \(\Lambda \) defines on the index set \(I = (1, \ldots, n) \) an equivalence relation: \(i \equiv j \) if and only if \(\sigma_{ij} = \sigma_{ji} = \Lambda \). This equivalence relation, in turn, defines a partition of the set \(I \) into equivalence classes:

\[
I = I_1 \cup I_2 \cup \cdots \cup I_m.
\]

For definiteness we number the classes \(I_k \) as follows. Let \(I_1 \) denote the class containing the number 1; then let \(I_2 \) denote the class containing the smallest number not in \(I_1 \); then let \(I_3 \) denote the class containing the smallest number not in \(I_1 \cup I_2 \); and so on.

The symmetric group \(S_n \) on degree \(n \) acts as a group of operators on the nets of order \(n \) as follows:

\[
(\sigma^\tau)_{ij} = \sigma_{\tau(i)\tau(j)}, \quad \tau \in S_n.
\]

Let \(P(\sigma) \) denote the subgroup of those permutations \(\tau \) in \(S_n \) such that \(\sigma^\tau = \sigma \). Any permutation \(\tau \) in \(P(\sigma) \) maps each class \(I_\ell \) bijectively onto some class \(I_\delta \), so that we have