where

\[\hat{G}_d(x) = \begin{cases} 0 & \text{if } x < a; \\ \frac{\Phi(x) - \Phi(a)}{1 - \Phi(a)} & \text{if } x \geq a. \end{cases} \]

and \(0 < a < \infty \).

LITERATURE CITED

DISTRIBUTION OF A \(\chi^2 \) STATISTIC WITH ADDITIONAL OBSERVATIONS USED TO ESTIMATE THE UNKNOWN PARAMETER

M. S. Nikulin and I. S. Yusas

An explicit form of the Kambhampati statistic is given, which is a \(\chi^2 \) statistic with additional observations used to estimate the unknown parameter.

This note is directly related to [1] and [2], and as far as possible we use the same notation. In [1] the behavior of a \(\chi^2 \) statistic was investigated for testing the hypothesis \(H_0 \) that independent identically distributed random variables \(\xi_1, \ldots, \xi_n \) follow a distribution from the family of distribution functions \(f(x, \xi), x \in \mathbb{R}^l, \xi = (\xi_1, \ldots, \xi_m) \in A \subset \mathbb{R}^s \), where \(A \) is an open set. The problem of testing the hypothesis \(H_0 \) was considered in a nonstandard setting since the vector of frequencies \(\psi^{(n)}(\xi_1, \ldots, \xi_m) \) was obtained from the observations \(\xi_1, \ldots, \xi_n \), whereas the unknown parameter \(\alpha \) was estimated in [1] using \(n = m \psi(\cdot) \) additional independent observations \(\xi_{m+1}, \ldots, \xi_{m+n} \), from the same distribution as the random variables \(\xi_1, \ldots, \xi_n \); here \(\psi(\cdot) \) is some monotone increasing function such that for \(n \to \infty \), we have \(n/\psi(\cdot) \to \gamma, 0 < \gamma < 1 \), \(n = n_1 + m \).

Because of the additional observations used for estimation of the parameter \(\alpha \), the standard \(\chi^2 \) statistic incorporated in the test of the hypothesis \(H_0 \) is highly perturbed and the limit behavior of the test statistic is distorted. It is shown in [1] that the following theorem holds when the parameter \(\alpha \) is estimated by the maximum likelihood method.

THEOREM 1. If the hypothesis \(H_0 \) is true, then the statistic

\[X^2 = \sum_{i=1}^{n} \frac{\left(\frac{\psi^{(n)}(\cdot)}{n}, \xi_i \right)}{\psi_{i1}}, \]

is distributed in the limit for $N \to \infty$ as

$$\xi_1^2, \ldots, \xi_{\gamma-1}^2 + \sum_{i=1}^\delta (1 - \gamma_i) \eta_i^2,$$

where $\xi_1, \ldots, \xi_{\gamma-1}, \eta_1, \ldots, \eta_\delta$ are independent standard normal deviates, and the numbers γ_i are between 0 and 1 and in general depend on the unknown value δ_i of the parameter δ.

This theorem shows that it is not easy to use the standard Pearson statistic to test the hypothesis H_0 in this setting because of the complicated limit distribution of the statistic X^2. It is shown in [2, 3] that the Pearson statistic can be modified so that the modified test statistic for the hypothesis H_0 has a χ^2 distribution in the limit. In this article we give explicit expressions for this modified statistic for the case when the parameter δ is estimated by the least squares and the maximum likelihood method.

The problem of testing the hypothesis H_0 with additional observations used for parameter estimation may arise in the following situation. Suppose that the entire output of some enterprise is characterized by a scalar variable whose numerical values are interpreted as sample values of independent identically distributed random variables $\xi, \ldots, \xi, \xi, \ldots, \xi, N = n+m$. These values are used by production control to estimate the unknown parameter δ of the probability distribution $F(\xi, \delta)$ of the random variables ξ. If the consumer purchases only part of the production output, he will find himself in a situation considered at the beginning of this note if he applies the χ^2 statistic to test the hypothesis H_0 using the distribution parameter as estimated by the enterprise.

1. First consider the case when the parameter δ is estimated by the minimum χ^2 method. Partition R^1 into r intervals $(-\infty, \xi], (\xi, \xi], \ldots, (\xi, \infty)$ so that the probabilities $p_i(\delta) = P\{\xi \in (\xi, \xi]\} (i=1, \ldots, r)$ satisfy the Cramer conditions (1)-(4) formulated in [1]. Let $\delta^{(m)}$ be the estimator of the modified minimum χ^2 method computed from the grouped observations ξ, \ldots, ξ, ξ, and let the vector $V = (\xi^{(m)}, \ldots, \xi^{(m)})^T$ be the result of grouping the first n observations by the interval classes. Define the vector $V = (\xi^{(m)}, \ldots, \xi^{(m)})^T$ with the components

$$v_i = \frac{\xi_i - \delta^{(m)} p_i(\delta^{(m)})}{\sqrt{n \delta^{(m)} p_i(\delta^{(m)})}}.$$

It is shown in [1] that under the hypothesis H_0 the vector V is asymptotically normally distributed for $N \to \infty$, and

$$E V = 0, \quad E VV^T = \sum (\delta^2) = I - p p^T - \delta B (B^T B)^{-1} B^T,$$

where I is the unit matrix, $p = (p_1(\delta), \ldots, p_r(\delta))^T$, $B = \|I\| I$, $I_{ij} = \frac{I}{p_i(\delta)} \left(\frac{\delta}{\delta_j} \right)$, $i=1, \ldots, r$; δ is the unknown true value of the parameter δ. Let $\Sigma(\delta')$ be the generalized inverse of the matrix $\Sigma(\delta)$. Following [2], we form the Kambhampati quadratic form

$$Q(\delta^{(m)}, \delta') = V^T \Sigma(\delta') V,$$