ON AN EXTENSION PROBLEM, GENERALIZED FOURIER ANALYSIS, AND AN ENTROPY FORMULA

Harry Dym and Israel Gohberg

Let \(h(t) \) be an \(n \times n \) matrix valued function on the interval \(|t| \leq \tau \) with summable entries. Let \(\hat{h} \) denote the Fourier transform of \(h \) and let \(e \) denote the \(n \times n \) identity matrix. Necessary and sufficient conditions for the existence of an extension \(u \) of \(h \) to the full line such that \(e-u \) admits either a left or a right canonical factorization and the inverse transform of \((e-u)^{-1} - e \) vanishes for \(|t| \geq \tau \) are presented and discussed. The connections between these extensions and a generalized Fourier transform are then explored in detail with the help of the theory of triangular factorization. It is then shown that if an allied finite Wiener-Hopf operator based on \(h \) is positive, then \(h \) admits exactly one extension of the type alluded to above. This extension is then characterized in terms of an entropy integral.

TABLE OF CONTENTS

0. NOTATION
1. INTRODUCTION
2. PRELIMINARIES
3. TYPE I EXTENSIONS
4. TYPE II EXTENSIONS
5. TYPE I AND TYPE II EXTENSIONS
6. ISOMETRIES AND TRANSFORMS
7. DIFFERENTIAL EQUATIONS, REPRODUCING KERNELS, CHRISTOFFEL-DARBOUX AND ENTROPY FORMULAS
8. THE POSITIVE DEFINITE CASE
9. REFERENCES
0. **NOTATION**

Throughout this paper we shall let \mathbb{R} denote the real numbers, \mathbb{C} the complex numbers, and \mathbb{P}_+ [resp. \mathbb{P}_-] the open upper [resp. lower] half of the complex plane. If ω is a set [resp. a complex number], then $\bar{\omega}$ stands for the closure [resp. complex conjugate] of ω. The symbol $L^p_{n \times m}$ will denote the space of $n \times m$ matrix valued functions on \mathbb{R} with entries belonging to L^p. If $1 \leq p < \infty$, then $L^p_{n \times m}$ is a Banach space with respect to the norm

$$
\|f\|_{L^p_{n \times m}} = \left\{ \sum_{i=1}^n \sum_{j=1}^m \|f_{ij}\|_{L^p}^2 \right\}^{1/2}
$$

where f_{ij} denotes the ij entry of f. We shall abbreviate this norm by $\| \|$ and the space $L^p_{n \times 1}$ by L^p and shall, if say the interval of integration is $[a,b]$ and not \mathbb{R}, indicate this by the notation $L^p_{n \times m}[a,b]$.

The symbols \hat{f} [resp. f^\vee] will denote the Fourier transform [resp. inverse Fourier transform]:

$$
\hat{f}(\lambda) = \int_{-\infty}^{\infty} f(t)e^{i\lambda t} dt \quad \text{and} \quad f^\vee(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda)e^{-i\lambda t} d\lambda .
$$

If A is a matrix, then A^\times [resp. A^\dagger] will denote the conjugate transpose [resp. transpose (without conjugation)] of A, whereas if A is an operator in a Hilbert space, then A^* will denote the operator adjoint.

The symbol e appearing without superscripts (as opposed to say $e^{i\lambda t}$) will always denote the $n \times n$ identity matrix: $\text{diag}(1,1,\ldots,1)$, whereas I will typically denote the identity operator acting in an $L^p_{n \times m}$ space.