Value on a Class of Non-Differentiable Market Games

By Y. Tauman, Evanston

Abstract: We prove the existence of a (unique) Aumann-Shapley value on the space on non-atomic games Q^n generated by n-handed glove games. (These are the minima of n non-atomic mutually singular probability measures.) It is also shown that this value can be extended to a value on the smallest space containing Q^n and pNA.

In their book "Values of Non-Atomic Games", Aumann/Shapley [1974, Chap. 3] have discussed the asymptotic approach to the value concept. In particular, they have proved that a three handed glove game which is a minimum of three non-atomic mutually singular probability measures, does not have an asymptotic value. The questions raised by the authors are whether there is an (axomatic) value on the smallest symmetric subspaces Q^3 of BV containing such games; and if the value does exist can one extend it to a value on the smallest linear space containing Q^3 and pNA. (Note that every game in pNA has an asymptotic value [Aumann/Shapley, Theorem F].) In this paper we give positive answers to these two questions.

Let (I, C) be a given measurable space which is isomorphic to $([0,1], B)$ where B is the σ-field of Borel sets on $[0,1]$. Let n be a fixed positive integer. Let Q^n be the linear space generated by all games v of the form

$$v = \text{min}(\mu_1, \ldots, \mu_n)$$

where (μ_1, \ldots, μ_n) is a vector measure with the properties that $\mu_i \in NA$ for each i, $1 \leq i \leq n$ and if $i \neq j$ then μ_i and μ_j are mutually singular. Any two vectors (μ_1, \ldots, μ_n) and $(\hat{\mu}_1, \ldots, \hat{\mu}_n)$ with these properties are isomorphic, i.e., there is an automorphism Θ of (I, C) such that

$$(\Theta^* \mu_1, \ldots, \Theta^* \mu_n) = (\hat{\mu}_1, \ldots, \hat{\mu}_n).$$

Therefore, for a given (μ_1, \ldots, μ_n) with the above properties, Q^n is the smallest symmetric subspace of BV containing $\text{min}(\mu_1, \ldots, \mu_n)$. For the rest of the paper (μ_1, \ldots, μ_n) will be fixed.

1) Professor Yair Tauman, Graduate School of Management, Northwestern University, Evanston, IL 60201, U.S.A.
Theorem 1. For each n there is a unique value φ on the space Q^n. φ satisfies
\[\varphi(\min(\mu_1, \ldots, \mu_n)) = \frac{\mu_1 + \cdots + \mu_n}{n}. \]

Proposition 19.7 of Aumann/Shapley [1974, p. 139] asserts that a value on Q^3 if it exists must satisfy the same equation as φ above. Therefore by additivity and symmetry this value must be the unique value on Q^3. Using the same arguments as in the proof of Proposition 19.7 it is clear that this result holds in general for any positive integer n, i.e., if a value on Q^n exists it must be unique. Thus we have to prove only the existence part of Theorem 1 above. The proof of this part is based upon the following lemma.

Lemma 2. Let $v = \min(\mu_1, \ldots, \mu_n)$. For each i, $1 \leq i \leq m$, let $a_i \in E^1$ and let Θ_i be an automorphism of (I, C). If $\sum_{i=1}^{m} a_i \Theta_i^* v$ is a monotonic game then
\[\sum_{i=1}^{m} a_i \Theta_i^* \left((\mu_1 + \cdots + \mu_n)/n \right) > 0. \]

Using Lemma 2, the proof of Theorem 1 is as follows:

Any game in Q^n is of the form $\sum_{i=1}^{m} a_i \Theta_i^* v$. Define $\varphi : Q^n \to FA$ by
\[\varphi(\sum_{i=1}^{m} a_i \Theta_i^* v) = \sum_{i=1}^{m} a_i \Theta_i^* \left(\frac{\mu_1 + \cdots + \mu_n}{n} \right). \tag{1} \]

First we have to prove that φ is a well defined operator i.e., if $\sum a_i \Theta_i^* v = \sum b_i \Theta_i^* v$ then $\varphi(\sum a_i \Theta_i^* v) = \varphi(\sum b_i \Theta_i^* v)$. By (1) it is enough to prove that $\sum a_i \Theta_i^* v = 0 \Rightarrow \varphi(\sum a_i \Theta_i^* v) = 0$. Indeed, if $\sum a_i \Theta_i^* v = 0$ then both, $\sum a_i \Theta_i^* v$ and $-\sum a_i \Theta_i^* v$ are monotonic games, therefore by Lemma 2 $\varphi(\sum a_i \Theta_i^* v)$ and $-\varphi(\sum a_i \Theta_i^* v)$ are non negative which implies $\varphi(\sum a_i \Theta_i^* v) = 0$. The fact that φ is linear, symmetric and efficient follows immediately from (1) and the fact the φ is positive is exactly Lemma 2. Thus φ is a value on Q^n.

Proof of Lemma 2. Assume that $\sum_{i=1}^{m} a_i \Theta_i^* v$ is a monotonic game. Let
\[\Pi = (I_1, I_2, \ldots, I_n) \]
be a partition of I (i.e., $I_k \cap I_j = \emptyset$ if $k \neq j$, $\bigcup_{j=1}^{n} I_j = I$ and $I_j \in C$), such that I_j is a support of μ_j. For each i, $1 \leq i \leq m$,
\[\Theta_i^{-1} \Pi = (\Theta_i^{-1} I_1, \ldots, \Theta_i^{-1} I_n) \]
is\footnote{For each $S \in C$, $\Theta_i^{-1} S = \{ x \in I \mid \Theta_i x \in S \}$.} a partition of I whose elements are the supports of the vector measure $(\Theta_i^* \mu_1, \ldots, \Theta_i^* \mu_n)$.

[156] Y. Tauman