Value on a Class of Non-Differentiable Market Games

By Y. Tauman, Evanston

Abstract: We prove the existence of a (unique) Aumann-Shapley value on the space on non-atomic games Q^n generated by n-handed glove games. (These are the minima of n non-atomic mutually singular probability measures.) It is also shown that this value can be extended to a value on the smallest space containing Q^n and pNA.

In their book "Values of Non-Atomic Games", Aumann/Shapley [1974, Chap. 3] have discussed the asymptotic approach to the value concept. In particular, they have proved that a three handed glove game which is a minimum of three non-atomic mutually singular probability measures, does not have an asymptotic value. The questions raised by the authors are whether there is an (axomatic) value on the smallest symmetric subspaces Q^3 of BV containing such games; and if the value does exist can one extend it to a value on the smallest linear space containing Q^3 and pNA. (Note that every game in pNA has an asymptotic value [Aumann/Shapley, Theorem F].) In this paper we give positive answers to these two questions.

Let (I, \mathcal{C}) be a given measurable space which is isomorphic to $([0,1], \mathcal{B})$ where \mathcal{B} is the σ-field of Borel sets on $[0,1]$. Let n be a fixed positive integer. Let Q^n be the linear space generated by all games ν of the form
\[\nu = \min (\mu_1, \ldots, \mu_n) \]
where (μ_1, \ldots, μ_n) is a vector measure with the properties that $\mu_i \in NA^1$ for each i, $1 \leq i \leq n$ and if $i \neq j$ then μ_i and μ_j are mutually singular. Any two vectors (μ_1, \ldots, μ_n) and $\hat{(\mu_1, \ldots, \mu_n)}$ with these properties are isomorphic, i.e., there is an automorphism Θ of (I, \mathcal{C}) such that
\[(\Theta^* \mu_1, \ldots, \Theta^* \mu_n) = (\hat{\mu}_1, \ldots, \hat{\mu}_n). \]
Therefore, for a given (μ_1, \ldots, μ_n) with the above properties, Q^n is the smallest symmetric subspace of BV containing $\min (\mu_1, \ldots, \mu_n)$. For the rest of the paper (μ_1, \ldots, μ_n) will be fixed.

1) Professor Yair Tauman, Graduate School of Management, Northwestern University, Evanston, II 60201, U.S.A.
Theorem 1. For each \(n \) there is a unique value \(\phi \) on the space \(Q^n \). \(\phi \) satisfies

\[
\phi(\min (\mu_1, \ldots, \mu_n)) = \frac{\mu_1 + \cdots + \mu_n}{n}.
\]

Proposition 19.7 of Aumann/Shapley [1974, p. 139] asserts that a value on \(Q^3 \) if it exists must satisfy the same equation as \(\phi \) above. Therefore by additivity and symmetry this value must be the unique value on \(Q^3 \). Using the same arguments as in the proof of Proposition 19.7 it is clear that this result holds in general for any positive integer \(n \), i.e., if a value on \(Q^n \) exists it must be unique. Thus we have to prove only the existence part of Theorem 1 above. The proof of this part is based upon the following lemma.

Lemma 2. Let \(v = \min (\mu_1, \ldots, \mu_n) \). For each \(i, 1 \leq i \leq m \), let \(a_i \in E^1 \) and let \(\Theta_i \)

be an automorphism of \((I, C)\). If \(\sum_{i=1}^{m} a_i \Theta_i^*v \) is a monotonic game then

\[
\sum_{i=1}^{m} a_i \Theta_i^* (\mu_1 + \cdots + \mu_n)/n \geq 0.
\]

Using Lemma 2, the proof of Theorem 1 is as follows:

Any game in \(Q^n \) is of the form \(\sum_{i=1}^{m} a_i \Theta_i^*v \). Define \(\phi : Q^n \to FA \) by

\[
\phi(\sum_{i=1}^{m} a_i \Theta_i^*v) = \sum_{i=1}^{m} a_i \Theta_i^* \left(\frac{\mu_1 + \cdots + \mu_n}{n} \right).
\] (1)

First we have to prove that \(\phi \) is a well defined operator i.e., if \(\sum_{i=1}^{m} a_i \Theta_i^*v = \sum_{j=1}^{n} b_j \Theta_j^*v \) then \(\phi(\sum_{i=1}^{m} a_i \Theta_i^*v) = \phi(\sum_{j=1}^{n} b_j \Theta_j^*v) \). By (1) it is enough to prove that

\(\sum_{i=1}^{m} a_i \Theta_i^*v = 0 \Rightarrow \phi(\sum_{i=1}^{m} a_i \Theta_i^*v) = 0 \). Indeed, if \(\sum_{i=1}^{m} a_i \Theta_i^*v = 0 \) then both, \(\sum_{i=1}^{m} a_i \Theta_i^*v \) and

\(- \sum_{i=1}^{m} a_i \Theta_i^*v \) are monotonic games, therefore by Lemma 2 \(\phi(\sum_{i=1}^{m} a_i \Theta_i^*v) \) and \(- \phi(\sum_{i=1}^{m} a_i \Theta_i^*v) \)

are non negative which implies \(\phi(\sum_{i=1}^{m} a_i \Theta_i^*v) = 0 \). The fact that \(\phi \) is linear, symmetric and efficient follows immediately from (1) and the fact the \(\phi \) is positive is exactly Lemma 2. Thus \(\phi \) is a value on \(Q^n \).

Proof of Lemma 2. Assume that \(\sum_{i=1}^{m} a_i \Theta_i^*v \) is a monotonic game. Let

\(\Pi = (I_1, I_2, \ldots, I_n) \) be a partition of \(I \) (i.e., \(I_k \cap I_j = \emptyset \) if \(k \neq j \), \(\bigcup_{j=1}^{n} I_j = I \) and \(I_j \in C \)), such that \(I_j \) is a support of \(\mu_j \). For each \(i, 1 \leq i \leq m \),

\(\Theta_i^{-1} \Pi = (\Theta_i^{-1} I_1, \ldots, \Theta_i^{-1} I_n) \)

is\(^2\) a partition of \(I \) whose elements are the supports of the vector measure \((\Theta_i^* \mu_1, \ldots, \Theta_i^* \mu_n)\).

\(^2\) For each \(S \in C, \Theta_i^{-1} S = \{ x \in I \mid \Theta_i x \in S \} \).