Dynamic Systems of Differential Inclusions for the Bargaining Sets

By M. Yarom, Jerusalem

Abstract: Dynamic systems of differential inclusions, leading to the appropriate bargaining sets, are introduced. Stability properties of these systems are studied.

1. Introduction

Maschler/Peleg [1976] investigated dynamic systems of the form

\[x^{t+1} \in \varphi (x^t), \quad t = 0, 1, 2, \ldots \]

where \(\varphi \) is a set-valued function. In this paper we are concerned with analogous systems of the form

\[\dot{x}(t) \in F(x(t)), \quad (1.1) \]

where \(F(x) = \varphi (x) - x \). Analogous results to the main results of Maschler/Peleg [1976, Sections 3 and 4] hold in the present case. These results are generalized in this paper.

The theoretical base of our investigation is provided in Section 2. Sufficient and necessary conditions, for a given set to be a stable set, are given. In Section 3 we introduce dynamic systems of the form (1.1) having the following property: For any initial point \(x \), there exist solutions of these systems that start at \(x \) and converge to the appropriate bargaining set of a given game. These systems include, as particular cases, Billera's [1972] systems and analogous of Stearns' [1968] schemes. In Section 4 we deduce the stability of Schmeidler's [1969] nucleolus, each point of the lexicographic kernel and every nonempty strong \(e \)-core with respect to each of these systems.

1) Dr. M. Yarom, Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel.

0020-7276/85/010051-61$2.50 © 1985 Physica-Verlag, Vienna.
2. Stable Sets and Stable Points

Let X be a closed subset of \mathbb{R}^n and let F be a multifunction (namely, set-valued function) from X into \mathbb{R}^n. We consider the following differential inclusion:

$$\dot{x}(t) \in F(x(t)).$$

(2.1)

A solution of (2.1) is any absolutely continuous function $x : \mathbb{R}_+ \rightarrow X$ that satisfies (2.1) for almost all t in \mathbb{R}_+.

The definitions that will be introduced in this section are analogous to appropriate definitions of Maschler/Peleg [1976] with respect to discrete systems.

A point x in X is called a critical point of F if

$$F(x) = \{0\}.$$

(2.2)

Definition 2.1: A nonempty subset Q of X is called stable w.r.t. (with respect to) F, if for every neighborhood U of Q there exists a neighborhood V of Q such that, for any solution x of (2.1), $x(0) \in V$ implies $x(t) \in U$ for all t in \mathbb{R}_+.

Remark 2.2: X is always a stable set.

Definition 2.3: A point x in X is stable if $\{x\}$ is stable.

Definition 2.4: Let $g : X \rightarrow \mathbb{R}$ and let $\alpha \in \mathbb{R}$. g is called an α-Lyapunov function for F if for any solution x of (2.1),

$$0 \leq s \leq t \Rightarrow g(x(t)) - g(x(s)) \leq \alpha \| x(t) - x(s) \|,$$

(2.3)

where $\| \cdot \|$ is some fixed norm in \mathbb{R}^n.

Proposition 2.5: Suppose that a Lipschitz function $g : X \rightarrow \mathbb{R}$ satisfies:

$$x \in X \text{ and } y \in F(x) \Rightarrow g'(x; y) \leq \alpha \| y \|,$$

(2.4)

for some $\alpha \leq 0$, where

$$g'(x; y) = \liminf_{r \to 0^+} \frac{g(x + ry) - g(x)}{r}.$$

(2.5)

Then, g is α-Lyapunov.

See, e.g., Yarom [1983, Th. 2.4] for the proof of Proposition 2.5.

Definition 2.6: Let $g : X \rightarrow \mathbb{R}^m$. g is called F-monotone if each of its components is 0-Lyapunov.

We quote the following two definitions of Maschler/Peleg [1976].