On Maximum Tests for Normal Distributions

By H. Frick, München

Abstract: Let \(y \) be a normally distributed random vector with known regular covariance matrix and let \(A, B \) be disjoint closed convex sets in \(\mathbb{R}^n \). To be tested is the zero-hypothesis \(E(y) \in A \) against the alternative hypothesis \(E(y) \in B \) at a level of significance \(\alpha \). Taking the set of admissible tests as one strategy set, the set of probability densities corresponding to \(B \) as the other strategy set and the power function of the test problem as the pay-off function this game has an equilibrium point. Thus there is a test, in particular a Neyman-Pearson test, which is simultaneously a maximin and a minimax test. The optimal test is uniquely determined, except on sets with measure zero. Finally the case of non-convex \(A, B \) is briefly considered.

1. Introduction

Let \(y \) denote a normally distributed random vector with known covariance matrix \(\Sigma, \Sigma \) regular. Let \(A, B \subseteq \mathbb{R}^n \) be non-void disjoint closed convex sets. In order to make the matter here not too complicated we additionally claim: if \(\{a_v - b_v\}_v \not\subset A - B \) is bounded \(\forall_v \), then both \(\{a_v\}_v \in A, \{b_v\}_v \in B \) are. We want to test the zero-hypothesis

\[H_0: E(y) \in A \]

\((E: \text{expectation value})\) against the alternative hypothesis

\[H_1: E(y) \in B \]

with level of significance \(\alpha, 0 < \alpha < 1 \); i.e. calling any Lebesgue-measurable function \(\psi: \mathbb{R}^n \to [0, 1] \) a test and denoting for

\[\gamma = (\gamma_1, \ldots, \gamma_n)^T, \quad x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n \]

\[f_\gamma(x) := \det (\Sigma^{-1})^{1/2} (2\pi)^{n/2} \exp \left[- \frac{(x - \gamma)^T \Sigma^{-1} (x - \gamma)}{2} \right] \]

and \(F_A := \{f_\gamma, \gamma \in A\}, F_B := \{f_\gamma, \gamma \in B\} \) we consider the set of tests

\[\psi_\alpha := \{\psi, E(\psi, f_\gamma) \leq \alpha \forall \gamma \in A\}, E(\psi, f) := \int_{\mathbb{R}^n} \psi(x) f(x) \, dx. \]

\(^{1)}\) Dr. Hans Frick, Seminar für Ökonometrie und Statistik der Universität München, Akademiestr. 1/1, D–8000 München 40.
The expression $F(\psi, f), \psi \in \psi_\alpha, f \in F_A \cup F_B$ is called the power function of the test problem.

Generally there does not exist a uniformly most powerful test [Schmetterer]. In this case one often will use a maximin test, i.e. a test $\psi_0 \in \psi_\alpha$ with

$$\inf_{\gamma \in B} E(\psi_0, f_\gamma) = \sup_{\psi \in \psi_\alpha} \inf_{\gamma \in B} E(\psi, f_\gamma) \text{ [ibd. p. 178].}$$

Let us call $\psi' \in \psi_\alpha$ a minimax test if there is a $\gamma' \in B$ with

$$E(\psi', f_{\gamma'}) = \sup_{\psi \in \psi_\alpha} E(\psi, f_{\gamma'}) = \inf_{\gamma \in B} \sup_{\psi \in \psi_\alpha} E(\psi, f_\gamma).$$

2. Existence of a Saddlepoint

It is clear that if (ψ^*, f_{γ^*}) is a saddlepoint of the power function $E(\psi, f)$ on $\psi_\alpha \times F_B$, i.e. when for all $\psi \in \psi_\alpha, f_\gamma \in F_B$ the following double inequality holds

$$E(\psi, f_{\gamma^*}) \leq E(\psi^*, f_{\gamma^*}) \leq E(\psi^*, f_{\gamma^*}),$$

then ψ^* is simultaneously a maximin and a minimax test.

We shall show that existence of a saddlepoint.

Let $\gamma' \in A, \gamma'' \in B$. The well-known Neyman-Pearson lemma [Schmetterer] yields

$$E(\psi, f_{\gamma'}) \geq E(\psi, f_{\gamma''})$$

for all test ψ with $E(\psi, f_{\gamma'}) \leq 0$ for

$$\psi_{\gamma', \gamma''}(x) =
\begin{cases}
1 & (\gamma'' - \gamma')^T \Sigma^{-1} x \geq (\gamma'' - \gamma')^T \Sigma^{-1} \gamma' + [(\gamma'' - \gamma')^T \Sigma^{-1} (\gamma'' - \gamma')]^{1/2} \cdot U(1 - \alpha) \\
0 & \text{elsewhere}
\end{cases}$$

where U denotes the inverse function of $\Phi(z) = \int_{-\infty}^{\frac{z}{\sqrt{2}}} e^{-t^2/2} dt / \sqrt{2\pi}$. Because

$A \cap B = \emptyset$, equality only holds if $\psi(x) = \psi_{\gamma', \gamma''}(x)$ almost everywhere. [ibd. p. 167].

We call $\psi_{\gamma', \gamma''}$ a Neyman-Pearson test when $\gamma' \in A, \gamma'' \in B$. One immediately sees that for an arbitrary $\gamma \in A \cup B$

$$E(\psi_{\gamma', \gamma''}, f_{\gamma'}) = \Phi((\gamma'' - \gamma')^T \Sigma^{-1} (\gamma - \gamma')/[(\gamma'' - \gamma')^T \Sigma^{-1} (\gamma'' - \gamma')]^{1/2} - U(1 - \alpha)).$$

hence especially

$$E(\psi_{\gamma', \gamma''}, f_{\gamma''}) = \Phi([\gamma'' - \gamma')^T \Sigma^{-1} (\gamma'' - \gamma')]^{1/2} - U(1 - \alpha).$$