and $\Gamma = [\mathcal{G}_n]$. Then $F(\mathcal{G}_0) = 1$ and $F(\mathcal{G}_n) = 0$ for all $n = 1, 2, \ldots$, i.e., $\mathcal{G}_0 \equiv \Gamma$. But

$$g_0(x) = \lim_{n \to \infty} g_n(x)$$

for arbitrary $x \in X$, i.e., $g_0 = w^* = \lim_{n \to \infty} g_n$. Thus, $g_0 \not\equiv \Gamma_{(1)} \setminus \Gamma$ and $\Gamma \neq \Gamma_{(1)}$.

In conclusion, the author thanks M. I. Kadets for the formulation of the problem and assistance with the article.

LITERATURE CITED

H-TRANSFORMATIONS IN RIEMANNIAN SPACES

V. V. Navrozov

UDC 513.73

A Riemannian space $V_n (n = mr)$, equipped with an integrable regular H-structure isomorphic to a hypercomplex algebra $h (\dim h = r)$, is considered as a real realization of a hypercomplex manifold \tilde{V}_m over the algebra h. The geometry of \tilde{V}_m can be mapped into the geometry of V_n. In particular, with the transformations of \tilde{V}_m are associated H transformations (preserving the H-structure of the space) in V_n. The H-conformal and the H-projective transformations of V_n are investigated.

Here we will continue the investigations, started in [1] (the notation and the definitions from [1] are used below). We will study real Riemannian space $V_n (n = mr)$ with the metric, pure with respect to an integrable regular H-structure isomorphic with a hypercomplex Frobenius algebra $h (\dim h = r)$. Such a V_n can be considered as a real realization of a hypercomplex Riemannian space \tilde{V}_m (with an h-analytic metric). A mapping of the geometry of \tilde{V}_m into the geometry of V_n turns out to be possible.

Everywhere the indices take the following values: $i, j, k, \ldots = 1, \ldots, n = \dim V_n; \alpha, \beta, \gamma, \ldots = 1, \ldots, r = \dim h; u, v, w, \ldots = 1, \ldots, m$. With each index i from V_n is associated a pair of indices (u, α) by the law $i = (u - 1)r + \alpha$. In the sequel we will write $i = u\alpha$, $j = v\beta$, $k = w\gamma$, \ldots .

An arbitrary affinor $A \in H$ has the form

$$A = a^\alpha E^\alpha, \quad a^\alpha \in \mathbb{R}, \quad (1)$$

where E^α are the basic affinors of the H-structure corresponding to the basis $\{e^\alpha\}$ of the algebra h.

The H-structure contains the unit affinor I, whose components in the expansion (1) are denoted by e^α (the decomposition of the principal unit element 1 of the algebra h with respect to the basis: $1 = e^\alpha e_\alpha$).
Definition 1. A transformation of a Riemannian space V_n with a pure metric, preserving the H-structure of the space, is called an H-transformation of the space.

If a vector $X = \{x^i\}$ defines a certain H-transformation of V_n, then the condition of preservation of the H-structure coincides with the condition of the h-analyticity of the vector X [2]:

$$\mathcal{L}_X A^i_j = 0, \quad A = (A^i_j) \subseteq H,$$

where \mathcal{L}_X is the symbol of the Lie derivative along the field of the vector X.

H-movements and affine H-collineations of the Riemannian space V_n with a pure metric have been investigated in [1]. Here we will study H-conformal and H-projective transformations.

1. H-Conformal Transformations. Let us consider the hypercomplex Riemannian space V^*_m with the h-analytic metric

$$g_{uv} = G_{uv\mu}e^\mu$$

and the hypercomplex Riemannian space \tilde{V}_m with the metric

$$\tilde{g}_{uv} = \sigma g_{uv},$$

where $\sigma = \sigma(z) = \sigma^\mu(x)e^\mu$ is an arbitrary hypercomplex function. As in the real case [3], we say that a conformal transformation of the metric \tilde{g}_{uv} has been carried out and the spaces V^*_m and \tilde{V}_m are in conformal correspondence.

Let V_n be a real realization of V^*_m over the hypercomplex Frobenius algebra h. Then a pure metric tensor of the space V_n corresponds in a one-to-one manner to the tensor (3):

$$g_{ij} = \sigma g_{ij} = \sigma G_{ij\mu}e^\mu$$

where g_{ij} is the symbol of the Lie derivative along the field of the vector X.

Further, we assume that the tensor (4) is nonsingular, the space V_n is Riemannian, and $\tilde{g}_{ij} = \sigma^\mu E_{\mu ij}$ is its metric tensor.