Suppose a finite group G is the product of a subgroups A and B of coprime orders, and suppose the order of A is p^aq^b, where p and q are primes, and B is a 2-decomposable group of even order. Assume that a Sylow p-subgroup P is cyclic. If the order of P is not equal to 3 or 7, then G is solvable. If G is nonsolvable and G contains no nonidentity solvable invariant subgroups, then G is isomorphic to $PSL(2, 7)$ or $PGL(2, 7)$.

In [1] the author described the finite nonsolvable groups which are a product of two subgroups of coprime orders, one of which is a Schmidt group and the other a 2-decomposable group (see also [2, pp. 70-100]). All properties of a Schmidt group are well known, in particular, it is biprimary, i.e., its order is divisible by exactly two distinct primes, and it has a nonidentity cyclic Sylow subgroup.

Developing the above-mentioned result of [1], we will prove in the present note the following.

THEOREM 1. Suppose a finite group G is the product of subgroups A and B of coprime orders, and suppose that A is a biprimary group and that B is a 2-decomposable group of even order. Assume that A contains a nonidentity cyclic Sylow subgroup P. If G is nonsolvable, then $G/R(G)$ is isomorphic to $PSL(2, 7)$ or $PGL(2, 7)$.

Here $R(G)$ denotes the product of all solvable invariant subgroups of G.

COROLLARY. Suppose a group G possesses the factorization mentioned in Theorem 1. If the order of P is not equal to 3 or 7, then G is solvable.

The proof of Theorem 1 begins with the study of the special case where B is primary. This case, without the assumption that the order of B is even, is described in

THEOREM 2. Suppose a nonsolvable group G is the product of a biprimary subgroup A and a primary subgroup B. If G contains a cyclic Sylow subgroup, then $G/R(G)$ is isomorphic to one of the following:

1) $PSL(2, 5) = A_5; Z_5$;
2) $PSL(2, 7) = S_4Z_7 = (Z_7 \times Z_3)D_6$;
3) $PSL(2, 8) = (E_2 \times Z_2)Z_6$;
4) $PGL(2, 5) = S_4Z_5$;
5) $PGL(2, 7) = (Z_7 \times Z_3)D_6$;
6) $PGL(2, 8) = (E_2 \times Z_2)Z_3$ where G_3 is a Sylow 3-subgroup;
7) $PSL(3, 3)$, the order of A is 2^43^3, and $B \cong Z_{11}$.

Since biprimary groups are solvable, the group G in Theorem 2 has an order divisible by exactly three distinct primes. Such simple groups are known at present only in the case where they contain a cyclic Sylow subgroup. This invites the requirement of cyclicity of a Sylow subgroup in the hypothesis of Theorem 1, hence also in the hypothesis of Theorem 1.

If we knew all simple groups of order $p^aq^br^c$, where p, q, and r are distinct primes, then the method of proof of Theorem 1 would enable us to describe the nonsolvable groups with the factorization indicated in Theorem 1, without assuming cyclicity of P.

We will use the following notation: S_n and A_n are the symmetric and alternating groups of degree n; Z_n, E_n, and D_n are the cyclic, elementary Abelian, and dihedral groups of order n. A semidirect product of groups X and Y with invariant subgroup X will be denoted by $X \rtimes Y$. A group is called primary if its order is a power of a prime.

1. Preliminary Lemmas

Lemma 1. If a group G is the product of two subgroups A and B of coprime orders and K is a subinvariant subgroup of G, then $K = (K \cap A)(K \cap B)$.

Proof. If N is an invariant subgroup of G, then $N \cap A$ is a Hall π-subgroup of N, where $\pi = \pi(A)$, and $N \cap B$ is a Hall π'-subgroup of N (see [3, p. 35]). Therefore, $N = (N \cap A)(N \cap B)$. If M is an invariant subgroup of N, then we again have

$$M = (M \cap N \cap A)(M \cap N \cap B) = (M \cap A)(M \cap B)$$

and so on.

Lemma 2. If a group G is the product of a primary subgroup of odd order and a 2-decomposable subgroup, then G is solvable.

Proof. Suppose $G = AB$, A is a p-group, p is an odd prime, and B is a 2-decomposable group. The group G contains a Sylow p-subgroup P such that $P = AS$, where S is some Sylow p-subgroup of B (see [3, p. 676]). Since B is solvable, we have $B = B_1S$, where B_1 is a Hall p'-subgroup of B. But now $G = AB = PB = PB_1$. By Burnside's lemma (see [3, p. 491]), G is not simple. By Lemma 1, an invariant subgroup N of G is factorable, i.e., $N = (P \cap N)(B_1 \cap N)$, hence N is solvable by induction. The factor group G/N is also solvable by induction. Therefore, G is solvable.

Lemma 3. The groups $PSU(3, 3^s)$ and $PSp(4, 3)$ do not contain biprimary Hall subgroups.

Proof. Suppose $G = PSU(3, 3^s)$. Then the order of G is $2^{5s^2}3^s$ and a Sylow 7-subgroup of G is self-centralizing. Since the order of G is greater than that of S_7, it follows that G contains no subgroup of order 2^{5s^2}.

Assume there exists a subgroup K of order 3^{2s} by Sylow's theorem on the number of Sylow subgroups, K is 7-closed, i.e., a subgroup P of K of order 7 is invariant in K. But now K/P is isomorphic to a subgroup of the group of all automorphisms of P, which is isomorphic to Z_{2s}. Contradiction.

Assume there is a subgroup H of order 2^{5s}. As in the previous case, H cannot be 7-closed. Since the index in H of the normalizer N of a Sylow 7-subgroup is congruent to 1 modulo 7, it follows that $|H:N| = 2^{5s}$ and $|N| = 2^{5s}$. Therefore, the order of Z_{2s} must be divisible by 4, which is impossible. Thus, $PSU(3, 3^s)$ contains no biprimary Hall subgroups.

Now suppose $G = PSp(4, 3)$. Then the order of G is $2^{5s^2}3^s$, a Sylow 3-subgroup T of G is non-Abelian, and $|T'| \leq 3^s$. A Sylow 2-subgroup R is also non-Abelian and R/R' has exponent 2. The normalizer of a Sylow 5-subgroup P of G has order 20, and the centralizer of P in G coincides with P (see [3, pp. 229–231]).

Assume there exists a subgroup H of order 3^{2s}. Then H is 3-closed and, since H is non-nilpotent, $N_{H}(P) = P$. The subgroup T is non-Abelian, hence a minimal invariant subgroup T_1 of H has order at most 3^s. Now $H/C_H(T_1)$ is isomorphic to a subgroup of the group of all automorphisms of T_1. But T_1 is elementary Abelian, hence $Aut T_1 \cong GL(k, 3)$, where $k = 3$, and the order of $Aut T_1$ is not divisible by 5. Thus, $P \subseteq C_H(T_1)$, but then $T_1 \subseteq C_H(P) = P$. Contradiction.

Assume there exists a subgroup K of order 2^{5s}. Let L be a minimal invariant subgroup of K. Since $N_{G}(P)$ has order 2^{5s}, it follows that P is non-invariant in K and that L is a 2-group. By Maschke's theorem (see [3, p. 122]), L is a direct product of irreducible P-subgroups L_i. The subgroup P is self-centralizing, hence the L_i do not centralize P and, according to [3, Theorem II.3.10], the order of L_i is 2^i for all i. Consequently, $i = 1$ and $L_1 = L$. The factor group K/L has order 20, hence it is 5-closed and L_1P is invariant in K. Now $K = LNK(P)$. The intersection $L \cap NK(P)$ is invariant in $NK(P)$, hence $L \cap NK(P) \subseteq C_K(P) = P$. Thus, $L \cap NK(P) = 1$, and R/L is isomorphic to a cyclic group of order 4 in $NK(P)$. This contradicts the fact that R/R' has exponent 2.

If G contains a subgroup of order 2^{5s^2}, then the index of this subgroup in G is 5. Therefore, G is isomorphic to a subgroup of the symmetric group S_5 of degree 5. But the order of G is greater than that of S_5. Contradiction.