DIVERGENCE OF INTERPOLATION PROCESSES
ON SETS OF THE SECOND CATEGORY

A. A. Privalov

C([0, 1]) is the space of real continuous functions \(f(x) \) on \([0, 1]\) and \(\omega(\delta) \) is a majorant of the modulus of continuity \(\omega(f, \delta) \), satisfying the condition \(\lim_{\delta \to 0} \frac{\omega(\delta)}{\delta} = \infty \). A solution is given to a problem of S. B. Stechkin: for any matrix \(\mathbb{M} \) of interpolation points there exists an \(f(\omega) \in C([0, 1]), \omega(f, \delta) = \omega(\delta) \) whose Lagrange interpolation process diverges on a set \(\mathbb{A} \) of second category on \([0, 1]\).

Let \(\mathbb{M} = \{x_{k,n}\}, 0 \leq x_{1,n} < x_{2,n} < \ldots < x_{n,n} \leq 1, \) \(n = 1, 2, 3, \ldots \), be a matrix of interpolation points belonging to the segment \([0, 1]\). Then for any real continuous function \(f(x) \) on the segment \([0, 1]\), \(f(x) \in C([0, 1]) \), we set

\[
L_n(\mathbb{M}, f, x) = \sum_{k=1}^{n} f(x_{k,n}) l_{k,n}(\mathbb{M}, x), \quad n = 1, 2, 3, \ldots,
\]

where

\[
l_{k,n}(\mathbb{M}, x) = \frac{\omega_n(x)}{\omega_n(x_{k,n}) (x - x_{k,n})}, \quad \omega_n(x) = \prod_{i=1}^{n} (x_i - x_{i,n}).
\]

We denote by \(\omega(f, \delta) \) the modulus of continuity of the function \(f(x) \in C([0, 1]) \), and by \(\Omega_0 \) the set of all real, semiadditive, continuous, nondecreasing functions \(\omega(\delta) \) on the segment \([0, 1]\), such that

\[
\omega(0) = 0 \quad \text{and} \quad \lim_{\delta \to 0^+} \frac{\delta}{\omega(\delta)} = 0.
\]

If \(\omega(\delta) \in \Omega_0 \) and \(\omega(f, \delta) = o(\omega(\delta)) \), then we say that \(f(x) \in C^*(\omega, [0, 1]) \).

In [1] it was shown that if \(\omega(\delta) \in \Omega_0 \) and

\[
\lim_{n \to \infty} \omega(1/n) \ln n = \infty, \quad (1)
\]

then for any matrix \(\mathbb{M} = [0, 1] \) there is a point \(x_0 \in [0, 1] \) and a function \(f(x) \in C^*(\omega, [0, 1]) \), such that

\[
\lim_{n \to \infty} |L_n(\mathbb{M}, f, x_0)| = \infty. \quad (2)
\]

Sergei Borisovich Stechkin posed this problem in a personal conversation: prove for any matrix \(\mathbb{M} \) the existence of a function \(f(x) \in C([0, 1]) \), whose Lagrange interpolation process diverges on a set \(\mathbb{G} \subset [0, 1] \) of second category.

The goal of the present note is the proof of the following theorem.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.
THEOREM. Let the function \(\omega(\delta) \in \Omega_0 \) satisfy (1) and let \(M \) be an arbitrary matrix. Then there exists a function \(f(x) \in C_* (\omega, [0, 1]) \) and a set \(\delta \subset [0, 1] \) of the second category such that (2) is true everywhere in \(\delta \).

In what follows, all arguments are carried out for an arbitrary fixed matrix \(M \) and given function \(\omega(\delta) \in \Omega_0 \) satisfying (1).

LEMMA 1. There exists a countable set \(\{x_i\} \), dense in the segment \([0, 1] \), a sequence \(\{f_i(x)\} \) of functions \(f_i(x) \in C_* (\omega, [0, 1]) \) and a nonnegative function \(\beta(x) \in C([0, 1]) \) such that

1. the function \(\beta(x) \) depends only on \(M \) and \(\omega \) and

\[
\lim_{x \to \delta} \beta(x) = 0; \tag{3}
\]

2. for any \(i = 1, 2, 3, \ldots \) one has

\[
\max_{x \in [0, 1]} |f_i(x)| \leq \beta(\delta) \omega(\delta), \quad 0 \leq \delta \leq 1, \tag{4}
\]

\[
\lim_{n \to \infty} |L_n (M, f_i, x_i)| = \infty. \tag{5}
\]

The existence of a set \(\{x_i\} \) dense in \([0, 1]\) and of a sequence \(\{f_i(x)\} \) of functions \(f_i(x) \in C_* (\omega, [0, 1]) \) for which (6) holds follows from the remark on p. 286 in [1] about the theorem of [1], and the existence of a function \(\beta(x) \) satisfying (3)-(5) follows from the method of proof of the theorem of [1]. The lemma is proved.

Let the function \(\beta(x) \) be from Lemma 1 and let \(M \) be the set of functions \(f(x) \in C_* (\omega, [0, 1]) \) for which (4) and (5) are true. Then, arguing as in the proof of the theorem of Arzela-Ascoli [2], it is easy to see that the set \(M \) is compact in \(C_* (\omega, [0, 1]) \). It is obvious that \(C** (\omega, [0, 1]) \) is a convex, compact, complete metric space, and consequently, by the Baire theorem (see [3] or [2]) is a set of the second category in itself. In addition, by virtue of (4) and (5), we have \(C** (\omega, [0, 1]) \subset C_* (\omega, [0, 1]) \).

LEMMA 2. There exists a countable set \(\{x_i\} \) dense in the segment \([0, 1]\), and a function \(f(x) \in C** (\omega, [0, 1]) \) such that,

\[
\lim_{n \to \infty} |L_n (M, f, x_i)| = \infty, \quad i = 1, 2, 3, \ldots \tag{6}
\]

Proof.† By virtue of Lemma 1 there exists a set \(\{x_i\} \), dense in \([0, 1]\), and a sequence \(\{f_i(x)\} \) of functions \(f_i(x) \in C** (\omega, [0, 1]) \) such that (6) is true. We choose a point \(x_j \in \{x_i\} \) and let \(F_q \) be the set of those functions \(f(x) \in C** (\omega, [0, 1]) \) for which one has

\[
\sup_{n} |L_n (M, f, x_j)| \leq q.
\]

Since all the functionals \(L_n (M, f, x_j) \) are continuous, the set \(F_q \) is closed. We set

\[
X = \bigcup_{q=1}^{\infty} F_q
\]

and we shall show that the set \(Y \) is of the first category in \(C** (\omega, [0, 1]) \).

If \(X \) were of the second category in \(C** (\omega, [0, 1]) \), then there would exist a set \(F_{q_0} \) which would not be nowhere dense in \(C** (\omega, [0, 1]) \). Let \(F_{q_0} \) be dense in some ball \(K \) of radius \(\rho, \rho > 0 \). Since the set \(F_{q_0} \) is closed, \(F_{q_0} \supset K \), which means that for any function \(f(x) \in K \)

† The space \(C** (\omega, [0, 1]) \) is not a B-space, and hence we do not apply the principle of condensation of singularities (see [2]), nevertheless we owe the idea of the proof of the lemma to Theorem 1.5.1. of [4].