A Single Groupoid Identity for Steiner Loops

N. S. MENDELSOHN (Winnipeg, Manitoba, Canada)

Abstract

A loop which satisfies the identities \(x^2 = e, \ x e = e x = x, \) and \(x (y x) = (x y) x = y \) is called a generalized Steiner loop. In this paper it is shown that a generalized Steiner loop is a groupoid with a single law \(x (((y y) z) x) = z. \)

1. Introduction

In [1], the author has defined the concept of a generalized triple system as follows. Let \(S \) be a set of \(v \) elements. Let \(T \) be a collection of \(b \) subsets of \(S \), each of which contains three elements arranged cyclically, and such that any ordered pair of elements of \(S \) appears in exactly one cyclic triplet (note the cyclic triplet \{a, b, c\} contains the ordered pairs \(ab, bc, ca, \) but not \(ba, cb, ac\)). When such a configuration exists we will refer to it as a generalized triple system. If we ignore the cyclic order of the triples a generalized triple system is a B.I.B.D. with parameters, \(v, k=3, \lambda=2, b=v(v-1)/3, r=v-1. \) In [1] the following results are established:

(a) Not every B.I.B.D. with the appropriate parameters can have its triples arranged cyclically so as to form a generalized triple system.
(b) Generalized triple systems exist for all values of \(v \) except \(v=6 \) or \(v \equiv 2 \mod 3. \) (\(v=1 \) is not considered an exception. The system exists vacuously.)
(c) There is a one to one correspondence between generalized triple systems of order \(v \) and quasigroups of order \(v \) satisfying the identities \(x^2 = x, (xy) x = x(yx) = y. \) We use the term generalized Steiner quasigroup to mean a quasigroup which satisfies the above identities.

2. Steiner Loops

Let \(\mathcal{G} \) be a generalized Steiner quasigroup of order \(v \) and binary operator. From \(\mathcal{G} \) a loop \(\mathcal{G}^{*} \) with operator \(* \) is constructed as follows. The elements of \(\mathcal{G}^{*} \) are the same as those of \(\mathcal{G} \) together with an extra element \(e. \) Multiplication in \(\mathcal{G}^{*} \) is defined as follows:

\[
a * e = e * a = a; \quad a * a = e \quad \text{and if} \quad a, b \in \mathcal{G} \quad \text{with} \quad a \neq b \quad \text{then} \quad a * b = a * b.
\]

It follows easily that \(\mathcal{G}^{*} \) is a loop with identities \(x * e = e * x = x, x * x = e, x * (y * x) = (x * y) * x = y. \) Also, the correspondence between generalized Steiner quasigroups and generalized Steiner loops is a bijection.

Received May 29, 1970
THEOREM. A groupoid is a generalized Steiner loop if and only if it satisfies the identity $A(((BB) C) A) = C$.

Proof. It is clear that a generalized Steiner loop satisfies this identity. Conversely let \mathcal{G} be a groupoid satisfying the identity

$$A(((BB) C) A) = C \quad (1)$$

for all A, B, C in \mathcal{G}.

In (1) put $C = ((EE) F) (BB)$ and reducing obtain

$$A(FA) = ((EE) F) (BB) \quad (2)$$

From (2) $A(FA)$ is a function of F only so we may put

$$A(FA) = F^* \quad (3)$$

and from (2)

$$((EE) F) (BB) = F^*. \quad (4)$$

From (1) and (3) obtain

$$((BB) C)^* = C. \quad (5)$$

In $A(FA) = F^*$ replace A by AF obtaining

$$(AF) (F(AF)) = F^* \quad \text{or} \quad (AF) A^* = F^*. \quad (6)$$

In (5) put $C = E(BB)$ obtaining

$$((BB) (E(BB)))^* = E(BB) \quad \text{or} \quad E(BB) = E^{**}. \quad (7)$$

In (3) put $A = GG$ obtaining $(GG) (F(GG)) = F^*$ and using (7) obtain

$$(GG) F^{**} = F^*. \quad (8)$$

In (3) put $F = A$, obtaining $A(AA) = A^*$ and using (7) obtain

$$A^{**} = A^*. \quad (9)$$

From (5) and (9) obtain

$$C = ((BB) C)^* = ((BB) C)^{**} = C^* \quad \text{or} \quad C^* = C. \quad (10)$$

From (10) the equations (3), (5), (6), (7) become

$$A(FA) = F, \quad (BB) C = C, \quad (AF) A = F, \quad E(BB) = E.$$

Now suppose $FA = GA$ then $A(FA) = A(GA)$ or $F = G$. Similarly using $(AF) A = F$ the cancellation law $AF = AG$ implies $F = G$ is obtained. From $F = (GG) F = (HH) F$