Covering abelian groups with cyclic subsets

Ali Akbar Dad-Del

Summary. Let k and m be positive integers. An abelian group G is said to have an n-cover if there is a subset S of G consisting of n elements such that every non-zero element of G can be expressed in the form ig for some element g in S and integer i, $1 \leq i \leq k$. Let $s_n(k)$ be the largest order of abelian groups that have an n-cover. We investigate the behavior of $s_n(k)/k$ as $k \to \infty$ and n is fixed.

1. Introduction

There is a long history of tiling, packing, and covering of Euclidean space by translates of a convex body, in particular, by the cube, ball, and regular simplex. These concepts for concave bodies, even for starbodies, have been the subject of much less investigation. However, a series of papers going back to at least 1967 have been devoted to tilings and packings by translates of certain starbodies composed of cubes [9]. At first the work focussed on tilings [6]. But recently packing problems were considered [1, 5, 8]. The techniques were combinatorial, geometric, and algebraic. In this paper we examine the covering problem and some algebraic questions it suggests.

The problem of tiling n-space by translates of certain star bodies raised this group-theoretic question: Let k and n be positive integers. Does there exist a finite abelian group G of order $nk + 1$ and a subset $\{g_1, g_2, \ldots, g_n\}$ of G such that each non-zero element of G is uniquely expressible in the form ig_j, $1 \leq i \leq k$, $1 \leq j \leq n$? It has been partially answered in [2, 4, 7].

If the answer is 'no', then this packing question arises: What is the order of the smallest abelian group G that contains a subset $\{g_1, g_2, \ldots, g_n\}$ such that the kn element ig_j, $1 \leq i \leq k$, $1 \leq j \leq n$ are distinct? For $n = 1, 2$ the problem is trivial. For fixed $n \geq 3$, this order is asymptotic to $2 \cos(\pi/n)k^{3/2}$ as $k \to \infty$. (See [5].)
If the answer to the first question is 'no', a covering problem also arises: What is the order of the largest abelian group that contains a subset\(S = \{g_1, g_2, \ldots, g_n\} \) such that every element in \(G - \{0\} \) is represented at least once in the form \(ig_j, 1 \leq i \leq k, 1 \leq j \leq n \)? We answer this question easily for \(n = 1 \) and \(2 \), obtain partial results for arbitrary \(n \), make a conjecture about the behavior of this order for any fixed \(n \), and conclude by settling the case \(n = 3 \).

2. Covering non-cyclic abelian groups

For a positive integer \(k \) let \(S(k) = \{1, 2, \ldots, k\} \). Let \(G \) be an abelian group and \(S = \{g_1, g_2, \ldots, g_n\} \) a subset of \(G \) such that each element of \(G - \{0\} \) is of the form \(ig_j, i \in S(k) \) and \(g_j \in S \). In this case we call \(S \) an \(n \)-cover of \(G \) and say that \(S(k) \) \(n \)-covers \(G \).

In this section we consider coverings of non-cyclic groups. In particular we show that \(S(k) \) does not \(3 \)-cover a non-cyclic group of order greater than \(2k + 2 \). In Sec. 4 we show that the same result holds for cyclic groups.

The following two lemmas concern the covering of non-cyclic groups. It turns out that if a non-cyclic group has an \(n \)-cover, then its deviation from being cyclic is controlled by \(n \).

Lemma 2.1. Let \(S(k) \) \(n \)-cover \(G = C(r_1) \times C(r_2) \times \cdots \times C(r_u) \), where \(r_i | r_{i+1}, i = 1, 2, \ldots, u - 1 \). Then \(n \geq \frac{(r_u - 1)}{(r_1 - 1)} \).

Proof. If \(G \) has an \(n \)-cover so does \(G' = [C(r_1)]^u \), which is a homomorphic image of \(G \). For each \(g' \in G' \), \(|g' - \{0\}| \leq r_1 - 1 \). Thus \(G' \), hence \(G \), cannot be covered by fewer than \((r_u - 1)/(r_1 - 1) \) elements. \(\square \)

Lemma 2.2. Let \(S(k) \) \(n \)-cover \(G = C(r_1) \times C(r_2) \times \cdots \times C(r_u) \), where \(r_i | r_{i+1}, i = 1, 2, \ldots, u - 1 \) and \(n \geq 2 \). Then \(r_1 r_2 \cdots r_{u-1} \leq n - 1 \).

Proof. Let \(\{g_1, g_2, \ldots, g_n\} \) be an \(n \)-cover of \(G \). Since \(|g_i - \{0\}| \leq r_u - 1 \), \(1 \leq i \leq n \), we have

\[
n(r_u - 1) \geq |G| - 1,
\]

from which the lemma follows. \(\square \)

It is easy to check that, when \(n = 3 \), either lemma implies that \(G = C(r_1) \) or \(G = C(2) \times C(r_2) \) where \(r_2 \) is even. We examine the non-cyclic group \(G \), which can