Generalized-Finslerian connection coefficients for the static spherically symmetric space

G. S. ASANOV

Summary. The metric torsionless connection coefficients are found in an explicit way in the case of static spherically symmetric spaces defined in a generalized-Finslerian way. The connection coefficients are determined in terms of the metric tensor and its first derivatives.

1. Introduction

Suppose we are given an N-dimensional differentiable manifold \(M \) together with its local coordinates \(x^i \). Let us denote by \(y^i \) the components of a tangent vector (with respect to the natural frame) supported by \(x^i \), and by \(TM \) the tangent bundle of \(M \) without the zero section, so that the pair \((x^i, y^i), \sum_{i=1}^{N} (y^i)^2 > 0 \) is an element of \(TM \). Then we can consider on \(TM \) a symmetric nondegenerate tensor of type \((0, 2) \), whose local components are denoted by \(a_{ij}(x, y) \). We shall assume that \(a_{ij} \) is positively homogeneous of degree zero in \(y^i \) and differentiable with respect to each of its \(2N \) arguments (except when all the \(y^i \) vanish). The indices \(i, j, \ldots \) will range from 0 to \(N - 1 \).

Let us put

\[
C_{mni} = \frac{1}{2} \frac{\partial a_{mn}}{\partial y^i}.
\]

If

\[
C_{mni} y^m = 0
\]

Manuscript received July 3, 1992 and, in final form, April 8, 1993.
then \(a_{ij} \) is a Finslerian metric tensor. However, the geometric limits assigned by the theory of Finsler spaces (described in [1, 4]) can effectively be extended by dropping the condition (1.2). The corresponding general differential-geometric approach was formulated in [5, 6] in detail.

On introducing connection coefficients \(L_{im}^j(x, y) \) on \(TM \), we can follow [6] and Section 7 of [5] to stipulate that the metric condition

\[
\partial_i a_{mn} - 2y^k L_{kl}^i C_{mnj} - L_{mi}^k a_{kn} - L_{mi}^k a_{mk} = 0
\]

(1.3)

holds, where \(\partial_i = \partial / \partial x^i \), in which case the connection coefficients \(L_{im}^j \) are called metric relative to the tensor \(a_{ij}(x, y) \). In the sequel, we shall assume that \(L_{im}^j \) are positively homogeneous of degree zero in \(y^i \) and symmetric with respect to their subscripts. From (1.3) it follows directly that

\[
L_{jk}^i = r_{jk}^i - a^{im}(L_{jm}^m C_{kn} + L_{jm}^m C_{km} - L_{jm}^m C_{km}),
\]

(1.4)

which in turn entails

\[
L_k^i = Q_k^i - a^{im}(L_{km}^m C_{jm} - L_{km}^m C_{jm}),
\]

(1.5)

with

\[
Q_k^i = r_k^i - a^{im}L_{km}^m C_{kn},
\]

(1.6)

where

\[
L_{kj}^i = L_{kj}^i, \quad L^i = L_{kj}^i y^k, \quad r_k^i = r_{kj}^i y^j,
\]

(1.7)

and

\[
r_{kj}^i = \frac{1}{2} a^{im}(\partial_k a_{jn} + \partial_j a_{kn} - \partial_n a_{kj})
\]

(1.8)

are the associated Christoffel symbols. The tensor \(a^{ij} \) is reciprocal to \(a_{ij} \), so that \(a^{ij} a_{jn} = \delta_i^j \).

The equations (1.4) cannot be resolved for \(L_{jk}^i \) in the general case. Necessary and sufficient condition which the coefficients \(L_{jk}^i \) must satisfy to solve the equations (1.4) were established in Section 7 of [5] (not even supposing that the fields \(a_{ij} \) and \(L_{jk}^i \) are homogeneous and the coefficients \(L_{jk}^i \) are symmetric). In Section 2, we consider an interesting particular metric tensor proposed earlier in [2]. In the