Let $A_i = (a_{i1}, \ldots, a_{in})$, $1 \leq i \leq r$, denote r sequences of real numbers and let p_k ($1 \leq k \leq n$) be positive "weights" regarded as fixed. We shall write

$$A_n(A_1, \ldots, A_r) = \sum_{k=1}^{n} p_k a_{1k} \cdots a_{rk} - \left(\sum_{k=1}^{n} p_k a_{1k} \right) \ldots \left(\sum_{k=1}^{n} p_k a_{rk} \right) \left(\sum_{k=1}^{n} p_k \right)^{-1}.$$

The classical results, associated with Čebyšev's name, may be summarized in the following two theorems:

Theorem 1. If A_1, A_2 are sequences of real numbers which are monotonic in the same sense, then

$$A_n(A_1, A_2) \geq 0$$

and the inequality is reversed if A_1, A_2 are monotonic in the opposite sense. In either case, $A_n(A_1, A_2) = 0$ if and only if A_1 or A_2 is constant.

A sequence is naturally said so be "constant" if all its terms are equal.

Theorem 2. If $r \geq 3$ and A_1, \ldots, A_r are sequences of non-negative numbers which are monotonic in the same sense, then

$$A_n(A_1, \ldots, A_r) \geq 0.$$

There is equality in (2) if and only if at least $r - 1$ sequences among A_1, \ldots, A_r are constant.

A finite sequence $B = (b_1, \ldots, b_n)$ will be said to be increasing in mean (with respect to the given system of weights) if

Key words and phrases. Čebyšev's inequality, sequence monotonic in mean, refinement.
In [1], the following two theorems are given:

THEOREM 3. Let A_1, A_2 be two sequences of n real numbers each. If they are monotonic in mean in the same sense, then (1) is valid, and if they are monotonic in mean in opposite senses, inequality (1) is reversed. In either case the equality occurs if and only if A_1 or A_2 is constant.

THEOREM 4. Let $r \geq 3$, and let A_1, \ldots, A_r be sequences of non-negative numbers which are monotonic in mean in the same sense. Then (2) is valid. There is equality in (2) if and only if at least $r - 1$ sequences among A_1, \ldots, A_r are constant.

REMARK 1. Using Theorems 1–4, we can easily prove the corresponding integral analogous.

Let

$$M(I) = P_I(A_I(AB, p) - A_I(A, p)A_I(B, p)),$$

where

$$P_I = \sum_{i \in I} p_i$$

and

$$A_I(A, p) = \frac{1}{P_I} \sum_{i \in I} p_i a_i.$$

[3] contains a general result wherefrom we obtain the following theorem:

THEOREM 5. Let I and J denote nonempty disjoint finite sets of distinct positive integers. Suppose that $(a_k); (b_k)$ and (p_k) with $p_k > 0$ and $k \in I \cup J$, are sequences of real numbers. If the pairs

$$(4) \quad (A_I(A, p), A_J(A, p)) \text{ and } (A_I(B, p), A_J(B, p))$$

are similarly ordered, then

$$M(J \cup I) \geq M(I) + M(J).$$

If the pairs (4) are oppositely ordered, then the sense of (5) reverses. Equality holds if and only if either $A_I(A, p) = A_J(A, p)$ or $A_I(B, p) = A_J(B, p)$.