ON AN APPLICATION OF
HALL’S REPRESENTATIVES THEOREM
TO A FINITE GEOMETRY PROBLEM

K. KOŁODZIEJCZYK (Wroclaw) and Z. ROMANOWICZ (Wroclaw)

Abstract

It is well-known that n points not belonging to a hyperplane determine at least n hyperplanes. The possible configurations of hyperplanes in the case when the number of hyperplanes is equal to n are known, too. In this paper we obtain these results by means of Hall’s representatives theorem. The setting is that of a finite geometry.

1. Introduction

Let X be a finite set and let $P(X)$ denote the family of all subsets of X. Every two-element subset of X will be called a pair. We will say that a family $\mathcal{L} \subseteq P(X)$ determines a lines structure on X, if the following conditions hold:

$(\mathcal{L} - 1)$ card $l \geq 2$ for $l \in \mathcal{L},$

$(\mathcal{L} - 2)$ every pair of elements of X occurs in a unique $l \in \mathcal{L}$.

The pair (X, \mathcal{L}) will be called a geometry of lines, the elements of X are called points; members of \mathcal{L} are called lines. In $[3]$ (X, \mathcal{L}) is called a finite linear space. If $x \in l, l \in \mathcal{L}$, then we will say that x lies on l or that l passes through x. The line determined by two distinct points $x, y \in X$ will be denoted by $l(x, y)$.

De Bruijn and Erdős showed in $[2]$ that if card $\mathcal{L} > 1$ then card $\mathcal{L} \geq \text{card } X$. Moreover, if card $\mathcal{L} = \text{card } X = n > 1$, then only two realizations of lines geometry are possible, namely either a near-pencil (one line contains all but one of the points) or a projective plane and then each line in \mathcal{L} has k elements, exactly k lines pass through each point and $n = k(k - 1) + 1$.

Let (X, \mathcal{L}) be a lines geometry. A subset F of X will be called a linear variety if the following condition is satisfied:

$(\mathcal{L} - 3)$ $x, y \in F, x \neq y \Rightarrow l(x, y) \subseteq F.$

We say that a subset M of X is collinear if $M \subseteq l$ for some $l \in \mathcal{L}$. Otherwise M will be called noncollinear. Each three-element subset of X will be called a triple.

Key words and phrases. Finite incidence structure, Hall’s theorem, configuration of planes.
We shall say that a family \(S \subseteq \mathcal{P}(X) \) determines a *structure of planes* on \(X \) if the following conditions hold:

- \((S - 1)\) each plane \(\pi \in S \) includes a noncollinear triple,
- \((S - 2)\) each noncollinear triple belongs to exactly one plane,
- \((S - 3)\) each plane \(\pi \in S \) is a linear variety.

The triple \((X, \mathcal{L}, S)\) will be called a *planes geometry*. In the case when \(\text{card } S > 1 \), \((X, \mathcal{L}, S)\) will be called a *nontrivial planes geometry*.

In this paper we give two theorems concerning the nontrivial planes geometry \((X, \mathcal{L}, S)\), which are related to the above quoted results of de Bruijn and Erdős. Namely, we prove that \(\text{card } S \geq \text{card } X \), and moreover, in the case when \(\text{card } S = \text{card } X \), we indicate possible configurations of planes.

Similar results have already been obtained in [1] and [5] in terms of lattice and matroid theory, respectively. However, our approach seems to be elementary and the application of Hall’s representatives theorem [4] appears to be interesting.

The reader is referred to [6], where in the references to Problem 27 a wide information on related questions can be found.

2. The results

In this section we first give a few simple properties of \((X, \mathcal{L}, S)\), and next prove the main theorems.

PROPERTY 1. The set of all lines contained in \(\pi \) determines a lines structure on \(\pi \).

PROPERTY 2. The intersection of any number of planes is either the empty set, or a point, or a line.

PROPERTY 3. Each \(l \in \mathcal{L} \) and \(x \notin l \) determine exactly one plane, which we will denote by \(\pi(l, x) \).

PROPERTY 4. Any two intersecting lines determine exactly one plane.

PROPERTY 5. If \(l_1, l_2 \) do not belong to one plane and \(x, y \in l_1 \), \(x \neq y \), then \(y \notin \pi(l_2, x) \).

PROPERTY 6. If for a lines geometry \((X, \mathcal{L})\) we have \(\text{card } \mathcal{L} > 1 \), then for each \(l \in \mathcal{L} \) there exists \(x \notin l \) and for each \(y \) there exists \(l \) such that \(y \notin l \).