SPACES BETWEEN X AND ITS FREUDENTHAL COMPACTIFICATION

JAMES HATZENBUHLER* (Moorhead)
DON A. MATTSON* (Moorhead)

Abstract

Let ϕX indicate the Freudenthal compactification of a rimcompact, completely regular Hausdorff space X. In this paper the spaces Y which satisfy $X \subseteq Y \subseteq \phi X$ are characterized. From this a characterization of when X lies between its locally compact part $L(X)$ and $\phi(L(X))$ follows. Such spaces necessarily possess a compactification αX for which $\text{Cl}_{\alpha X}(\alpha X - X)$ is 0-dimensional. Conditions, including those internal to X, are provided which are necessary and sufficient for this property to hold.

1. Introduction

In this paper all spaces are completely regular and Hausdorff. A space X is rimcompact if each point of X has a base of open sets with compact boundaries. The Freudenthal compactification ϕX of a rimcompact space X is maximal with respect to the property that $\phi X - X$ is 0-dimensional. (See [1, 5, 6].) The aim of this paper is to characterize the spaces Y which lie between X and ϕX, that is, Y satisfies $X \subseteq Y \subseteq \phi X$. Characterizations for when Y lies between X and βX, the Stone–Čech compactification of X, are abundant and may be found in [4], for example.

Also, suppose X is any space for which the locally compact part $L(X)$ of X is dense and the set $R(X) = X - L(X)$ of points not having compact neighborhoods is 0-dimensional. A characterization is obtained for when $L(X) \subseteq X \subseteq \phi(L(X))$ holds. Such a space must possess a compactification αX for which the condition that $\text{Cl}_{\alpha X}(\alpha X - X)$ be 0-dimensional holds. Conditions, including those internal to X, are given which are necessary and sufficient for this property to hold. An example is provided of a space X for which some $\text{Cl}_{\alpha X}(\alpha X - X)$ is 0-dimensional but where X is not a subspace of $\phi(L(X))$.

Key words and phrases. Freudenthal compactification, 0-dimensional residue, 0-dimensional at infinity.

*This research was partially supported by a grant from Moorhead State University.
2. The main result

An open set U in a space is said to be π-open if the boundary, $Fr_X U$, of U is compact. (See [1].) Recall that a compactification αX of X is perfect if and only if whenever a closed set F separates X into disjoint non-empty open sets H_1 and H_2, then $Cl_{\alpha X} F$ separates αX into disjoint open G_1 and G_2 where $G_i \cap X = H_i$, for $i = 1, 2$. The Freudenthal compactification ϕX is the minimal perfect compactification of X. (See [6] and [8].) This provides motivation for the following:

Definition 2.1. We say that X is a perfect subspace of Y if and only if X is dense in Y and whenever U is a π-open set in X, then there is a π-open set U_1 in Y satisfying $U = U_1 \cap X$ and $Fr_Y U_1 = Fr_X U$.

We will need the following result in the proof of the main theorem.

Lemma 2.2. Suppose X is a rimcompact perfect subspace of Y. If every point of $Y - X$ has a base of π-open Y-neighborhoods with boundaries in X, then Y is rimcompact.

Proof. We need only to consider points in X. Let O_p be any Y-open neighborhood of a point $p \in X$. Choose a Y-open neighborhood N_p of p such that $Cl_Y N_p \subseteq O_p$. Now $N_p \cap X$ contains a π-open X-neighborhood U_p of p. By assumption, there is a π-open set V_p in Y such that $U_p = V_p \cap X$ and $Fr_Y V_p = Fr_X U_p$. Then $V_p \subseteq Cl_Y V_p = Cl_Y (V_p \cap X) \subseteq Cl_Y N_p \subseteq O_p$. Thus, $V_p \subseteq O_p$ so that p has a base of π-open neighborhoods in Y and the proof is complete. \blacksquare

In what follows a topological space is considered to be identified with any homeomorphic image of it.

Theorem 2.3. Let X be a rimcompact, dense subspace of Y. Then Y satisfies $X \subseteq Y \subseteq \phi X$ if and only if X is a perfect subspace of Y and each point of $Y - X$ has a base of π-open Y-neighborhoods with boundaries in X. Moreover, under these conditions $\phi X = \phi Y$.

Proof. Suppose $X \subseteq Y \subseteq \phi X$. Then each point of ϕX has a base of neighborhoods with compact boundaries which lie in X. (See VI.30 of [5].) Thus, all points of $Y - X$ also possess this property.

Next let U be any π-open set in X. If $Cl_X U = X$, set $U_1 = Y - Fr_X U$. Otherwise, since ϕX is perfect, $Fr_X U$ separates ϕX into disjoint V and W such that $V \cap X = U$ and $W \cap X = X - Cl_X U$. Evidently, $Fr_{\phi X} V = Fr_X U$. Setting $U_1 = V \cap Y$ provides the required π-open subset of Y. Hence X is a perfect subspace of Y.

Conversely, assume the conditions on Y. By Lemma 2.2, Y is rimcompact so that ϕY exists. The inclusion map of X into Y has an extension f mapping βX onto βY. Let p_1 and p_2 be the natural projections of βX and βY onto ϕX and ϕY.