SUR CERTAINES ALGÈBRES ASSOCIÉES À UNE MESURE DE GUELFAND

M. AKKOUCHI (Marrakech)

Abstract

Let μ be a Guelfand measure (cf. [A, B]) on a locally compact group G. Denote $L_1^\mu(G) := \mu \ast L_1(G)$ the commutative Banach algebra associated to μ. We show that $L_1^\mu(G)$ is semi-simple and give a characterization of the closed ideals of $L_1^\mu(G)$.Using the μ-spherical Fourier transform, we characterize all linear bounded operators ψ in $L_1^\mu(G)$ which are invariants by μ-translations (i.e. such that $\psi^1((xf)^\mu) = (x(\psi f))^\mu$ for each $x \in G$ and $f \in L_1^\mu(G)$; where $xf(y) = f(xy)$; $x, y \in G$). When G is compact, we study the algebra $L_1^\mu(G)$ and obtain results analogous to ones obtained for the commutative case: we show that $L_1^\mu(G)$ is regular, all closed sets of its Guelfand spectrum are sets of synthesis and establish theorems of harmonic synthesis for functions in $L_1^p(G)$ ($p = 1, 2$ or ∞).

Introduction

Soit G un groupe topologique localement compact et unimodulaire muni d’une mesure de Guelfand (cf [A, B]) notée μ. Notons $L_1^\mu(G) := \mu \ast L_1(G)$ l’algèbre de Banach commutative associée à μ. Au § 1 nous montrons que cette, algèbre est semi-simple; nous caractérisons ses idéaux fermés (par la proposition 1.7) comme étant les sous-espaces vectoriels fermés I de $L_1^\mu(G)$ vérifiant: $\mu((xf) \ast \mu \in I$ pour toute $f \in I$ et tout $x \in G$; où, $xf(y) = f(xy)$. Al’aide de la transformation de Fourier μ-sphérique, nous caractérisons au théorème 1.9 les endomorphismes bornés ψ de $L_1^\mu(G)$ qui sont invariants par μ-translations (i.e. les ψ vérifiant pour tout $x \in G$ et toute $f \in L_1^\mu(G)$ l’égalité: $\psi_{(xf)^\mu} = (x(\psi f))^\mu$).

Au § 2 nous nous plaçons dans le cas particulier où G est compact. Les résultats de l’étude de l’algèbre de Banach $L_1^\mu(G)$ sont semblables à ceux qu’on trouve en étudiant l’algèbre de Banach commutative des fonctions intégrables sur

Key words and phrases. Guelfand measure μ on a unimodular locally compact group G, μ-translations, μ-spherical Fourier transform, spectral synthesis, operators and spaces invariant by μ-translations.

Akadémiai Kiadó, Budapest
Kluwer Academic Publishers, Dordrecht
un groupe abélien compact. Nous montrons entre autre que $L_1^\mu(G)$ est une algèbre régulière, que tous les ensembles fermés de son spectre de Guelfand sont des ensembles de synthèse et nous démontrons des théorèmes de synthèse harmonique pour les fonctions de $L_p^\mu(G)$ pour $p = 1, 2$ ou $+\infty$.

§ 1. Étude de l'algèbre de Banach commutative associée à une mesure de Guelfand

1.1. Dans tout cet article, G est un groupe topologique localement compact et unimodulaire. On munit G d'une mesure $\mu \in M_1(G)$ vérifiant: $\mu = \mu^* = \mu \ast \mu$. On note dx la mesure de Haar de G. Pour tout $f \in \mathcal{K}(G)$ (i.e. f est continue à support compact) ou $f \in L_p(G)$, où $p = 1, 2$ ou $+\infty$, on pose:

$$f^\mu(x) := \mu \ast f \ast \mu(x) = \int \int f(t^{-1}xs^{-1})d\mu(t)d\mu(s).$$

Les images de $\mathcal{K}(G)$ et $L_p(G)$ ($p = 1, 2$ ou $+\infty$) par l'opérateur $f \mapsto f^\mu$ seront notés $\mathcal{K}^\mu(G)$ et $L_p^\mu(G)$ respectivement.

Pour tout $f \in L_p(G)$ ($p = 1, 2$ ou $+\infty$) on a: $(f^\mu)^\mu = f^\mu$ et $||f^\mu||_p \leq ||\mu||^2||f||_p$; où $||\mu||$ désigne la norme de μ. Il résulte que $\mathcal{K}^\mu(G)$ est dense dans $L_1^\mu(G)$ et que $L_p^\mu(G)$ est un sous-espace fermé de $L_p(G)$ pour $p = 1, 2$ ou $+\infty$.

Remarquons que pour tous $f, g \in L_1(G)$, on a:

$$(f^\mu \ast g)^\mu = f^\mu \ast g^\mu = (f \ast g^\mu)^\mu.$$

Dénissons le crochet de dualité entre $L_1(G)$ et $L_\infty(G)$ par:

$$<f; \phi> := \int f(x)\phi(x)dx,$$

$f \in L_1(G); \phi \in L_\infty(G)$ et $\phi(x) = \phi(x^{-1})$.

Pour ce crochets de dualité, on obtient pour tout $f \in L_1(G)$ et toute fonction $\phi \in L_\infty(G)$ l'égalité: $<f^\mu; \phi> = <f, \phi^\mu>$. Pour toute fonction complexe f sur G et tous $x, y \in G$ nous notons: $zf(y) = f(xy)$ et $f_x(y) = f(yx)$.

Nous remarquons que pour toute fonction intégrable f sur G on a: f appartient au centre de $L_1^\mu(G)$ si et seulement si $f \in L_1^\mu(G)$ et $(xf)^\mu = (f_x)^\mu$ pour tout $x \in G$.

Dans tout cet article, on supposera que μ est une mesure de Guelfand sur G, c'est à dire que l'algèbre de convolution $L_1^\mu(G)$ est commutative.

PROPOSITION 1.2. Pour tout $\phi \in L_\infty^\mu(G)$ et tout $f \in L_1^\mu(G)$, posons $T_\phi(f) = = <f, \phi>$. Alors:

i) L'application $\phi \mapsto T_\phi$ est une application linéaire bijective de l'espace $L_\infty^\mu(G)$ sur $[L_1^\mu(G)]'$ le dual de $L_1^\mu(G)$.

ii) $||T_\phi|| \leq ||\phi||_\infty \leq ||\mu||^2||T_\phi||$ pour tout $\phi \in L_\infty^\mu(G)$. En particulier si $||\mu|| = 1$, alors le dual de $L_1^\mu(G)$ est isométriquement isomorphe à $L_\infty^\mu(G)$, muni de la norme induite par $L_\infty(G)$.