SEPARATION AND APPROXIMATION THEOREMS
ON DERIVATIVES

By
G. PETRUSKA (Budapest)

1. Introduction

In this paper, we consider the following problems:
(i) (the problem of uniform approximation) characterize the sets \(H \subset [0, 1] \)
having the property that, for every Baire 1 function \(f(x) \) and for every \(\varepsilon > 0 \), there
exists a derivative \(g(x) \) such that
\[
|f(x) - g(x)| < \varepsilon \quad (x \in H);
\]
(ii) (the problem of separation) characterize the pairs \(H_1, H_2 \) \((H_1 \subset [0, 1],
H_2 \subset [0, 1])\) for which there exists a derivative \(g(x) \) with \(g|_{H_1} = 0, g|_{H_2} = 1 \).

These two problems are closely related to each other. We are going to prove
here a separation theorem (certainly not the best possible) by the aid of which we
give a full solution of the approximation problem.*

As for (i) two instances were proved in [1]:
(ia) if \(H \) is a nowhere dense closed set, then the uniform approximation property
holds on \(H \) ([1], Corollary 4.9);
(ib) if \(H \) is a set of measure zero, then, for every Baire 1 function \(f(x) \), there
exists a derivative \(g(x) \) with \(f(x) = g(x) \) \((x \in H)\) ([1], theorem 4.14).

As for (ii) an important special case was proved by Z. Zahorski (as a matter
of fact, it concerns to approximately continuous functions, see [3], Lemma 12):
(iiia) if \(H_1, H_2 \) are disjoint \(G_\delta \) and \(D \)-closed sets, then there exists an approxi-
mately continuous function \(f(x) \) with \(f|_{H_1} = 0, f|_{H_2} = 1 \), and \(0 < f(x) < 1 \) elsewhere.

2. Notations and lemmas

We apply here the same notations as in [1] and we need some results proved
in [1]. For the sake of the reader’s convenience we repeat here the notations and
list the referred results as lemmas.
— Let \(\mathcal{B} \) and \(\mathcal{D} \) denote the family of Baire 1 functions and derivatives, re-
spectively (all these functions are defined on \([0, 1]\)).
— If \(\mathcal{F} \) is any family of functions and \(H \subset [0, 1] \), then \(\mathcal{F}_H \) denotes the family
of restricted \(\mathcal{F} \)-functions, i.e. \(\mathcal{F}_H = \{ f|_H : f \in \mathcal{F} \} \).
— \(\lambda(H) \) denotes the Lebesgue outer measure of \(H \).
— The set \(H \) is called \(D \)-open, if every \(x \in H \) is of inner density 1 in \(H \).

* The complete solution of the separation problem has recently been found by M. Laczko-
vich ([2]).
A measurable set H is said to be metrically dense in an interval $[a, b]$ if, for every subinterval $I \subseteq [a, b]$, $\lambda(I \cap H) > 0$.

The closure and the interior of any set H is denoted by $\text{cl} \ H$ and $\text{int} \ H$, respectively.

Lemma 1 (see [1], Lemma 4.3). For any subset $\emptyset \neq E \subseteq (-\infty, +\infty)$ we define

$$h(x, E) = \inf \{|x-y|: y \in E\}^2.$$

Then $h(x, E)$ is continuous and for $x \in \text{cl} \ E$ even the derivative $h'(x, E)$ exists and

$$h(x, E) = h'(x, E) = 0 \quad (x \in \text{cl} \ E).$$

If further $F(x)$ is differentiable then, for any $G(x)$ with $F(x) \leq G(x) \leq F(x) + h(x, E)$, the relations

$$G'(x) = F'(x) \quad (x \in \text{cl} \ E), \quad G(x) = F(x) \quad (x \in \text{cl} \ E)$$

hold (the proof is trivial).

Lemma 2 (see [1], Corollary 4.7). Let E_1, \ldots, E_n, \ldots and $E = \bigcup E_n$ be nowhere dense and closed sets, $E_i \cap E_j = \emptyset$ ($i \neq j$). Let $f(x)$ be defined on E and suppose that $f|_{E_n}$ is constant for $n=1, 2, \ldots$. Then $f \in \mathcal{O}_E$.

Lemma 3. If $H \subseteq (a, b)$; $(a, b) \setminus H$ is metrically dense in (a, b), $\varphi(x) \leq \psi(x)$ are continuous functions in (a, b), then there exist differentiable functions $F(x)$ and $G(x)$ such that

(i) $F'(x) = 0 \quad (x \in H)$ and $\varphi(x) \leq F(x) < \psi(x) \quad (a < x < b)$,

(ii) $G'(x) = 1 \quad (x \in H)$ and $\varphi(x) < G(x) \leq \psi(x) \quad (a < x < b)$.

Proof. Assertion (i) is Corollary 4.12 in [1]. In order to prove (ii) we put $\varphi_1(x) = \varphi(x) - x$, $\psi_1(x) = \psi(x) - x$ and applying (i) we find $F(x)$ such that $F'(x) = 0 \ (x \in H)$ and

$$\varphi_1(x) \leq F(x) < \psi_1(x) \quad (a < x < b).$$

Hence $G(x) = F(x) + x$ satisfies the required conditions.

Lemma 4. Let H_1, H_2 be disjoint G_δ sets and denote

(1) $E = [\text{cl} \ H_1 \setminus \text{int} \ (\text{cl} \ H_1)] \cup [\text{cl} \ H_2 \setminus \text{int} \ (\text{cl} \ H_2)]$.

Then

(a) E is a nowhere dense closed set;

(b) if (a, b) is any interval contiguous to E then

(b1) $(a, b) \cap H_i \neq \emptyset$ implies that $(a, b) \cap H_i$ is everywhere dense in (a, b), $i=1, 2$;

(b2) $(a, b) \cap H_1 \neq \emptyset$ implies $(a, b) \cap H_2 = \emptyset$.

Proof. (a) is trivial. For (b1) we observe that $(a, b) \cap \text{cl} \ H_i$ is open. In fact, $x \in (a, b) \cap \text{cl} \ H_i$ implies $x \notin E$, hence $x \in \text{int} \ (\text{cl} \ H_i)$ by the definition of E. But $(a, b) \cap \text{cl} \ H_i$ is also closed (relatively) in (a, b), thus by the connectedness of (a, b) either $\text{cl} \ H_i \cap (a, b) = \emptyset$ or $\text{cl} \ H_i \cap (a, b) = (a, b)$ holds which proves (b1). Finally if $H_i \cap (a, b) \neq \emptyset$, $H_2 \cap (a, b) \neq \emptyset$, then by (b1) both sets are everywhere dense in (a, b).

Since H_1, H_2 are G_δ sets, $(a, b) \cap H_1 \cap H_2$ is everywhere dense in (a, b) as well, and this contradicts the assumption $H_1 \cap H_2 = \emptyset$.

Acta Mathematica Academiae Scientiarum Hungaricae 25, 1974