A Proof of a Relationship Between the Generalized Variances for Associated Autoregressive and Moving Average Processes

By O.D. Anderson, Nottingham

Summary: In this paper we give a simple proof of the result that, for any integer r, given two processes of order r, one autoregressive and the other moving average but both with the same parameters, then the generalized variance of all orders $k \geq 2r$, for the autoregressive process, is exactly equal to the infinite order generalized variance for the moving average process.

1. Introduction

Define the r-th order autoregressive process and the associated r-th order moving average process by, respectively,

$$\sum_{j=0}^{r} \phi_j Z_{i-j} = A_i$$ \hspace{1cm} (1.1)

$$Z_i = \sum_{j=0}^{r} \phi_j A_{i-j}$$ \hspace{1cm} (1.2)

where $\{A_i\}$ denotes a sequence of uncorrelated identically distributed zero-mean random variables with unit variance2), and the parameter set $(\phi_0, \phi_1, \ldots, \phi_r)$ is real with $\phi_0 = 1, \phi_r \neq 0$. However, we impose an extra restriction that the zeros of the polynomial $\sum_{j=0}^{r} \phi_j \xi^j$, in the complex variable ξ, must all lie outside the unit circle. This ensures that (1.1) is stationary, and that we can rewrite it in the form

$$Z_i = \sum_{j=0}^{\infty} \psi_j A_{i-j}$$ \hspace{1cm} (1.3)

where

$$\sum_{j=0}^{\infty} \psi_j \xi^j = \left(\sum_{j=0}^{r} \phi_j \xi^j \right)^{-1}$$ \hspace{1cm} (1.4)

2) The choice of unit variance is, as a referee remarks, rather unusual. But its use does avoid inelegantly cluttering up all the subsequent work with σ_A^2 and σ_A^{-2}.
For any stationary process, including (1.1) and (1.2), the autocovariance at lag \(l \) is defined by

\[
\gamma_l = \text{Cov} [Z_{i+l} ; Z_{i+l}]
\]

and the \(k \times k \) matrix \(P_k = (p_{st}) \), where \(p_{st} = \gamma_{|s-t|} \), is termed the \(k \)-th autocovariance matrix. For processes (1.1) and (1.2), we will write \(P_k \) as, respectively, \(P_k (r, 0) \) and \(P_k (0, r) \). From (1.3), we see that, for the autoregressive process

\[
p_{st} = \sum_{j=0}^{\infty} \psi_j \psi_{j+|s-t|}
\]

which is convergent, due to the stationarity condition.

We will prove that, for all \(k \gg 2r \),

\[
\lim_{k\to\infty} |P_k (0, r) | = |P_k (r, 0) |
\]

a result suggested in Anderson [1976 a]. To do this, we shall need the following algorithm given in Anderson [1976b]:

If \(b = (b_{st}) \), when partitioned into submatrices \(b_{st} \), is a non-singular matrix with inverse \(c = (c_{st}) \), partitioned coherently for multiplication by \(b \), and if \(B \) differs from \(b \) in one square sub-matrix only, say the \(ST \)-th with \(\tilde{B}_{ST} = \tilde{b}_{ST} + \tilde{b}_{ST} \); then, provided

\[
\tilde{b}_{ST} \quad \text{and} \quad [\zeta_{TS} + \beta_{ST}^{-1}]
\]

are both regular, the inverse of \(B, = (C_{st}) \) say when partitioned in the same way as \(\zeta \), is given by the submatrices

\[
C_{st} = \zeta_{st} - \zeta_{sS} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt}.
\]

This result is straightforwardly verified by showing that \((B_{st}) (C_{st}) = \mathbb{I}\), as we now demonstrate.

Define \(\beta_{st} = 0 \) whenever \(s \neq S \) or \(t \neq T \), then

\[
(B_{st}) (C_{st}) = (b_{st} + \beta_{st}) (\zeta_{st} - \zeta_{sS} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt})
\]

\[= \mathbb{I} + (\sum b_{sj} \zeta_{jT} - \zeta_{jS} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt}) \]

\[-(\sum b_{sj} \zeta_{jT} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt})
\]

\[= \mathbb{I} + (\beta_{ST} (\zeta_{Tt} - \zeta_{TS} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt}))
\]

\[-(\beta_{sS} [\zeta_{TS} + \beta_{ST}^{-1}]^{-1} \zeta_{Tt})
\]

where \(\beta_{sS} = \mathbb{I} \) if \(s = S \), but is null if \(s \neq S \). Thus