On Statistical Inference in Concentration Measurement

By W. Sendler, Dortmund 1)

Summary: The asymptotic distribution for a certain class of functionals of distribution functions is derived. This result is used to give distribution free asymptotic confidence intervals for these functionals; for this purpose, a strongly consistent estimate for the asymptotic variance is constructed. These results are applied to the Lorenz-curve and the Gini-measure as special cases of the above-mentioned class of functionals.

1. Introduction

Among the most frequently used quantities for the descriptive treatment of concentration phenomena are the Lorenz-curve (LC) and the Lorenz-concentration measure (LCM) (also called Gini-measure). If \(x^{(N)} = (x_1, \ldots, x_N) \) are the values of a positive attribute of a finite population of size \(N \), denote the LC by \(l(., x^{(N)}) \) and the LCM by \(\kappa (x^{(N)}) \); their definition is:

\[
l (\alpha, x^{(N)}) := \begin{cases} \\
\sum_{i=1}^{j} x_{Ni} / \sum_{i=1}^{N} x_i, & \text{for } \alpha = j/N, \ 1 \leq j \leq N \\
0, & \text{for } \alpha = 0
\end{cases}
\]

\[
l (\alpha, x^{(N)}) := l ((j - 1)/N, x^{(N)}) + N [l (j/N, x^{(N)}) - l ((j - 1)/N, x^{(N)})] (\alpha - (j - 1)/N) \quad \text{for } (j - 1)/N < \alpha < j/N, \ 1 \leq j \leq N
\]

\[
\kappa (x^{(N)}) = 1 - 2 \int_{0}^{1} l (\alpha, x^{(N)}) \, d\alpha = 1 - \frac{1}{N} \sum_{k=1}^{N} \left(\sum_{i=1}^{k-1} x_{Ni} + x_{Nk} \right) / \sum_{i=1}^{N} x_i
\]

(1)

\[
\kappa (x^{(N)}) = \sum_{i=1}^{N} \left(2 \frac{i}{N} - \frac{1}{N} - 1 \right) x_{Ni} / \sum_{i=1}^{N} x_i
\]

(2)

(\(x_{Ni}, 1 \leq i \leq N \), are the ordered components of \(x^{(N)} \)).

Note that the above definitions require the whole data \(x^{(N)} \); we will not deal with the corresponding definitions for grouped data during this paper.

There exists extensive literature on various concentration measures (for a broad presentation of these topics see Piesch [1975] and the references cited there), a considerable part of which is devoted to the discussion of their appropriateness for the description of concentration phenomena [cf. Bruckmann], their connection to related quantities like information measures, or their specific analytic properties [cf. Piesch]. It seems, however, that stochastic analysis of LC and LCM (to which we shall restrict our considerations) had been subject of investigations to a very poor amount only. This question becomes relevant when one is concerned with the description of concentration phenomena of an infinite population, e.g. on the basis of a random sample; then the attribute has to be considered as a random variable (r.v.) X and "concentration" has clearly to be a property of the distribution function (d.f.) F of X. Suppose $P \{X > 0\} = 1$ and $\mu_F := EX < \infty$, then the definitions corresponding to (1) and (2) in the present case are

$$l(\alpha, F) := \frac{\alpha}{\mu_F} \int_0^1 F^{-1}(t) \, dt, \quad 0 < \alpha \leq 1 \quad (1')$$

$$\kappa(F) := 1 - 2 \int l(\alpha, F) \, d\alpha = \frac{1}{\mu_F} \int_0^1 (2t - 1) F^{-1}(t) \, dt \quad (2')$$

(the last equality by partial integration), where, as usual, $F^{-1}(t) := \inf \{ \xi : F(\xi) \geq t \}$. Formally our problem will be as follows: let $X_i, 1 \leq i \leq n$, be i.i.d. r.v.-s distributed according to the d.f. F; based on this sample we intend to make statistical inference on functionals of d.f.-s like (1') (with fixed α) or (2'). In particular we shall study the asymptotic properties of estimates for a slightly more general type of functionals (sec. 2) and will use these results to give distribution free asymptotic confidence bounds (sec. 3); the application of this procedure to the functionals (1') and (2') is treated in sec. 4.

2. An Asymptotic Normal Estimator

Let (Ω, A, P) be our basic probability space in the sequel, X a r.v. with $P \{X > 0\} = 1$, F its d.f., whence $F(0) = 0$ if we agree F to be right continuous; denote by F_* the set of d.f.-s with $F(0) = 0$, then, observing $\mu_F = \int_0^1 F^{-1}(t) \, dt$, the quantities (1') and (2') are functionals over F_* of the type

$$\phi(F) := \frac{\int_0^1 J_c(t) F^{-1}(t) \, dt}{\int_0^1 J_d(t) F^{-1}(t) \, dt} \quad (3)$$