DIVERGENCE IN 3-MANIFOLD GROUPS

S.M. GERSTEN

Abstract

The divergence of the fundamental group of compact irreducible 3-manifolds satisfying Thurston's geometrization conjecture is calculated. For every closed Haken 3-manifold group, the divergence is either linear, quadratic or exponential, where quadratic divergence occurs precisely for graph manifolds and exponential divergence occurs when a geometric piece has hyperbolic geometry. An example is given of a closed 3-manifold N with a Riemannian metric of nonpositive curvature such that the divergence is quadratic and such that there are two geodesic rays in the universal cover \tilde{N} whose divergence is precisely quadratic, settling in the negative a question of Gromov's.

1. Introduction

This article is a continuation of [G1]. We have attempted to summarize the results of that earlier article so that the two papers may be read independently.

In [G1] we introduced a quasi-isometry invariant family of functions to measure, roughly speaking, the maximum rate at which geodesic rays diverge in the Cayley graph of a finitely generated group G. If G is the fundamental group of a finite CAT(0)-complex K, meaning that the universal cover \tilde{K} admits a CAT(0)-metric ([Gr1],[GhH]) such that the deck transformations of G act as isometries, then the divergence of G can be described simply as follows (we refer the reader to [GhH] for the definition of the CAT(0) condition and its properties, especially the article of W. Ballmann). Choose a base point $x_0 \in \tilde{K}$ and let S_r be the sphere of radius r centered at x_0 in the CAT(0)-metric. The divergence is the largest diameter $f(r)$ of a connected component of S_r, viewed as a function of r.

It is shown in [G1] how to modify this definition in the setting of finitely generated groups to get a quasi-isometry invariant; a consequence of the

Partially supported by NSF grant DMS-9200433.
definition is that the function \(f(r) \) considered up to an equivalence relation \(f \sim g \) is quasi-isometry invariant; here we write \(f \preceq g \) if there are positive constants \(A, B, C, D, E \) such that \(f(r) \preceq A g(Br + c) + Dr + E \) for all \(r \) and \(f \sim g \) if both \(f \preceq g \) and \(g \preceq f \). Thus it is meaningful to say that the divergence is quadratic, polynomial, or exponential.

In this note we shall calculate the divergence of the fundamental groups of compact irreducible 3-manifolds for which Thurston's geometrization conjecture is valid. For our purposes, a geometric piece is a compact 3-manifold \(P \) with nonempty boundary each of whose boundary components is a torus and such that the interior of \(P \) is either a cusped hyperbolic manifold or is Seifert fibred ([Sc]). In the former case, \(\hat{P} \) admits a complete Riemannian metric of constant negative curvature and finite volume so has \(H^3 \) geometry, and in the latter case \(\hat{P} \) has \(H^2 \times R \) geometry.

We say that the compact connected 3-manifold \(M \) is a **Thurston manifold** if there are a finite number of geometric pieces \(P_1, P_2, \ldots, P_m \) as above such that \(M \) is obtained by gluing certain toric boundary components of their disjoint union in pairs (it is allowed to glue together two boundary components of the same geometric piece). Thus \(M \) has a nonempty boundary iff at least one toric boundary component of the union is left unpaired. We call the images of the boundary components of the pieces in \(M \) the **canonical tori** of \(M \). Note that it follows from our definition that each boundary component of a Thurston manifold is incompressible; thus we have excluded the case of a solid torus, which is not a Thurston manifold although it is Haken.

There are more intrinsic ways of defining the notion of Thurston manifold which allow Klein bottle boundary components as well.\(^1\) However the orientable double covers of such manifolds satisfy our definition of Thurston manifold and the divergence is a quasi-isometry invariant, so there is no loss in taking our definition. We can now state our main results.

THEOREM 1. If \(M \) is a Thurston manifold with nonempty boundary and geometric pieces \(P_1, P_2, \ldots, P_m \), then
\[
\text{divergence}(\pi_1(P_i)) \preceq \text{divergence}(\pi_1(M)), \quad 1 \leq i \leq m.
\]

THEOREM 2. If all geometric pieces of the Thurston manifold \(M \) with nonempty boundary are Seifert fibred, then
\[
\text{divergence}(\pi_1(M)) \preceq x^2.
\]

\(^1\)The orientable manifold \(M \) is a Thurston manifold if \(M \) is a compact connected 3-manifold with \(\partial M \neq \emptyset \) and such that \(\partial M \) consists of tori and \(M \) is not a solid torus. It follows that each component of \(\partial M \) is incompressible in \(M \), since we have omitted the single exception of the solid torus. These manifolds are Haken, and hence Thurston's geometrization theorem applies to them.