A Non Locally Convex Example

By

N. T. Peck

Following existing terminology, we say that a topological linear space is nearly exotic if it admits no non-trivial continuous linear functionals. In [1] Klee asked whether, if E is an infinite-dimensional nearly exotic topological linear space, E must have a countably infinite dimensional subspace which is nearly exotic (in the relative topology). In [3] we raised the question whether, if E is an infinite-dimensional nearly exotic space, E must have a nearly exotic subspace of dimension less than $\min(\alpha, \beta)$, where α is the minimum dimension of a dense linear subspace of E and β is the minimum cardinality of a neighborhood base at the origin for E. Our purpose in this note is to answer these questions negatively with an example:

Theorem. There is a Hausdorff nearly exotic topological linear space E of algebraic dimension \aleph_1 which has the property that if F is any \aleph_0-dimensional subspace of E with the relative topology, F admits a separating family of continuous linear functionals.

This example is a sharpening of the example in 1.9 of [3], since we obtain that E is nearly exotic rather than simply that the continuous linear functionals on E fail to separate the points of E. It is also basically simpler than the one in [3], since the construction in lemmas 1.11 and 1.12 of that example is not needed here.

If A is a non-empty interval in $[0, 1]$ (not reducing to a point), we define $S(A)$ to be the space of real-valued measurable functions defined on the interval $[0, 1]$ which vanish outside of A; two functions are identified if they agree except on a set of Lebesgue measure zero. The convergence in $S(A)$ is defined by means of the metric

$$d(f, g) = \int_0^1 \frac{|f - g|}{1 + |f - g|} d\lambda,$$

where λ is Lebesgue measure. With this topology, $S(A)$ is a Hausdorff linear space. (See, for example, [2].)

Let $A = [a, b], A' = [a', b']$, where $a < b, a' < b'$. Then the map

$$x \mapsto a + \left(\frac{x - a'}{b' - a'}\right)(b - a)$$

is a homeomorphism of $S(A)$ onto $S(A')$. This is a sharpening of the example in 1.9 of [3].
of \(A' \) onto \(A \) induces a 1-1 linear map \(\Phi_{A,A'} \) of \(S(A) \) into \(S(A') \) defined by

\[
\Phi_{A,A'}(f) = f \circ \varphi.
\]

The construction of the example rests heavily on the properties of the functions \(\{f_n^A\}_{n=0}^\infty \) in \(S(A) \), defined as follows: if \(A = [a, b] \), set \(f_0^A = \chi_{[a, b]} \), and if \(n \geq 1 \), write \(n \) uniquely as \(2^i + j, 0 \leq i, 0 \leq j < 2^i \); then set

\[
f_n^A = \chi_{\left[a + \frac{j}{2^i+1}(b-a), a + \frac{j+1}{2^i+1}(b-a)\right]}.
\]

(\(\chi_\gamma \) denotes the characteristic function of the set \(\gamma \)). A dyadic rational point with respect to the interval \(A \) will be any point of the form \(a + \frac{k(b-a)}{2^i} \), where \(0 \leq i, 0 \leq k \leq 2^i \).

Lemma 1. The sequence \(\{f_n^A\} \) is linearly independent in \(S(A) \) and its linear span contains the set of all characteristic functions of intervals whose endpoints are dyadic rational points with respect to \(A \).

Proof. Letting \(I \) be the unit interval \([0, 1]\) and making use of the definition of \(\{f_n^A\} \) and the map \(\Phi_{I,A} \), we see that it is enough to prove the assertion in the case that \(A = I \). The proof of the first assertion can be found in 1.9 of [3]. To prove the second assertion, observe that

\[
\chi_{[\frac{1}{2}, 1]} = f_0^I - f_1^I.
\]

Now if \(0 \leq k < 2^{i+1} \), \(\chi_{\left[k \frac{2^i+1}{2^i+1}, \frac{k+1}{2^i+1}\right]} \) already appears in the sequence \(\{f_n^I\} \) if \(k \) is even; if \(k = 2j + 1 \), then

\[
\chi_{\left[j \frac{2^i+1}{2^i+1}, \frac{j+1}{2^i+1}\right]} = \chi_{\left[j \frac{2^i+1}{2^i+1}, \frac{2}{2^i+1}\right]} - f_{2^i+j}^I.
\]

Thus, induction on the integer \(i \) completes the proof.

For later use, we note the following consequences of (2) and the remarks preceding: for each positive integer \(n \) and each \(k, 0 \leq k < 2^n \), the function \(\chi_{\left[k \frac{2^n}{2^n}, \frac{k+1}{2^n}\right]} \) is in the linear span of \(\{f_j^I\} \), by Lemma 1, and plainly

\[
f_0^I = \frac{1}{2^n} \sum_{k=0}^{2^n-1} 2^n \chi_{\left[k \frac{2^n}{2^n}, \frac{k+1}{2^n}\right]}.
\]

Applying \(\Phi_{I,A} \) we obtain

\[
f_0^A = \frac{1}{2^n} \sum_{k=0}^{2^n-1} 2^n \Phi_{I,A}\left(\chi_{\left[k \frac{2^n}{2^n}, \frac{k+1}{2^n}\right]}\right).
\]

When each \(2^n \chi_{\left[k \frac{2^n}{2^n}, \frac{k+1}{2^n}\right]} \) is expressed in terms of the functions \(f_j^I \), (3) becomes an identity in the linearly independent elements \(f_j^I \) and (4) is the corresponding identity in the functions \(f_j^A \).

Now suppose that \(\mathcal{A} \) is an index set and that for each \(\alpha \) in \(\mathcal{A} \), \(A_\alpha \) is a non-empty interval in \([0, 1]\), not reducing to a point. Let \(\{f_n\}_{n=0}^\infty \) be the sequence in \(\prod_{\alpha \in \mathcal{A}} S(A_\alpha) \).