Note on the Smoothness of Integral Means

To ALEXANDER OSTROWSKI for his 60th anniversary

By JOHN W. GREEN in Los Angeles, Cal.

1. Introduction

If a function \(f(x) \) is continuous, its mean \(M_h(x) \) over the interval \((x, x+h)\) has a continuous derivative. Recently, L. D. THOMPSON [1] has shown among other results involving higher derivatives, that conversely, the continuity of \(M_h \), together with one other condition, implies that \(f \) is continuous. The additional condition is that \(f \) should be \emph{means continuous}, or that \(M_h \) should approach \(f \) as \(h \) tends to zero. It is pointed out in [1] that some additional condition is required for the converse to hold, as the example of a function \(f \) equal almost everywhere to a continuous function clearly shows.

Now the mean continuity of \(f \) implies by itself a considerable amount about the continuity of \(f \); it says that \(f \) is the derivative everywhere of its integral and thus has the \emph{Darboux} property of taking on all intermediate values and is continuous on a set of second category-all this without reference to \(M_h(x) \). Thus it would appear of some interest to obtain a converse theorem without this additional hypothesis. In the following we shall show that in a sense, the extra condition can be dispensed with entirely and that the above type of counter example is the only exception to a strict converse. To be precise, we prove the following theorem.

\textbf{Theorem 1:} If \(f \) is summable and \(M_h \) has a continuous derivative, then \(f \) is equal almost everywhere to a continuous function.

2. A lemma

The following lemma is somewhat more general than is required for the proof of the theorem.

\textbf{Lemma:} If \(g \) is a measurable function satisfying for each \(h \neq 0 \) the condition that \(g(x+h) - g(x) \) be continuous, then \(g \) is continuous.

Set \(g(x+h) - g(x) = p_h(x) \), where \(p_h \) is continuous. It is clear that if \(g \) is discontinuous at one point, it is so at all points and the nature of the discontinuity at all points is the same. Suppose that \(g \) is discontinuous at \(x_0 \). No loss of generality
is suffered by assuming that \(\lim_{t \to x} g(t) - g(x_0) > \delta > 0 \), and it follows immediately that for any \(x \), \(\lim_{t \to x} g(t) - g(x) > \delta \). Thus, given \(\varepsilon > 0 \), there is a point \(x_1 \) with \(|x_1 - x_0| < \varepsilon/2 \) and \(g(x_1) > g(x_0) + \delta \); similarly there is a point \(x_2 \) with \(|x_2 - x_1| < \varepsilon/4 \) and \(g(x_2) > g(x_1) + \delta > g(x_0) + 2\delta \), etc. In this way we see that \(g \) is unbounded above in the \(\varepsilon \)-neighborhood of \(x_0 \). Let \(k_i \) be chosen so that \(k_i \to 0 \) as \(i \to \infty \) and \(g(x_0 + k_i) \to \infty \). It follows that for any \(x \), \(g(x + k_i) \to \infty \). Set
\[
G(x) = \frac{g(x)}{1 + |g(x)|}.
\]

\(G \) is bounded and measurable, \(|G| < 1 \), but \(G(x + k_i) \to 1 \) for all \(x \). Thus for any \(a, b \),
\[
\int_a^b |G(x + k_i) - G(x)| \, dx \to \int_a^b 1 - G(x) \, dx = 0.
\]

However, for any summable function \(G \),
\[
\lim_{k \to 0} \int_a^b |G(x + k) - G(x)| \, dx = 0.
\]

This involves a contradiction and the lemma is proved.

It is perhaps of interest to note that without the hypothesis of measurability, the lemma is not true. In fact, let \(g \) be any discontinuous solution of the functional equation \(g(x + y) = g(x) + g(y) \). (For a discussion of these functions see [2].) Then \(g(x + h) - g(x) = g(x) + g(h) - g(x) = g(h) = \text{constant} \).

3. Proof of theorem 1

Let \(f \) be summable and \(M^*_h \) continuous for all \(h \neq 0 \). If \(F(x) = \int_a^x f(t) \, dt \), then
\[
h \, M^*_h(x) = F(x + h) - F(x).
\]

If \(F'(x) \) exists, then \(F'(x + h) \) exists; that is, if \(F' \) exists at one point it exists at all. We know that \(F' \) does exist and equal \(f \) almost everywhere. Thus \(F' \) exists at all points and satisfies the equation,
\[
F'(x + h) - F'(x) = h \, M^*_h(x).
\]

By the lemma, \(F' \) is continuous, and since \(f = F' \) almost everywhere, the statement of the theorem follows.

4. Extension to higher derivatives

Let \(M_h^{(n+1)} \) be continuous, \(n \geq 0 \). In particular, \(M_h \) is continuous and by theorem 1, \(f = f_1 + f_2 \), where \(f_1 \) is continuous and \(f_2 = 0 \) almost everywhere. The means