Möbius Inversion in Lattices

By

Henry H. Crafo

1. Introduction. In the development of computational techniques for combinatorial theory, attention has lately centered on Rota's theory of Möbius inversion [6]. The main theorem of Rota's paper, concerning the computation of the Möbius invariant across a Galois connection, is a prerequisite to the use of lattice-theoretic methods in combinatorics.

By suitably combining Rota's main theorem with a discrete analogue of integration-by-parts, we here obtain a perfectly general formulation of Möbius inversion across a Galois connection (theorem 3, below).

As immediate applications of this theory, we obtain a number of interesting computational results concerning finite lattices (section 3, 4) and combinatorial geometries (section 5).

2. Möbius Inversion across a Galois Connection. We begin with a restatement and a simplified proof of Rota's main theorem. The proof turns on the essential fact that for any (locally finite) ordered set Q with least element 0, the recursion

$$
\sum_{y \in Q} a(y) \zeta(y, z) = 0 \text{ for } z \neq 0
$$

has the unique solution $a(y) = 0$ with initial condition $a(0) = 0$, and has the unique solution $a(y) = \mu_Q(0, y)$ with initial condition $a(0) = 1$. Recall that the zeta function $\zeta(y, z)$ has value 1 if $y \leq z$, and has value 0 otherwise.

Theorem 1. If J is a closure operator on a finite lattice P, and $Q = P/J$ is the quotient lattice, consisting of the J-closed elements of P, then for all elements $x \in P$ and elements y closed in P, $x \leq y$, the sum

$$
\sum_{t; x \leq t \leq J(t) = y} \mu(x, t)
$$

has value $\mu_Q(x, y)$ if x is closed, and has value 0 otherwise.

1) We wish to express our gratitude to the National Research Council, Canada, for their support of this research (grant A-2994), to K. Jacobs, for his organization of the extraordinary conference "Kombinatorik" at Oberwolfach, and to D. Kleitman and J. Goldman, for their organization of the combinatorics seminar at M.I.T., for which this material was prepared.
Proof. Note that the theorem may be rewritten in the form

\[\delta(x, J(x)) \mu_Q(J(x), y) = \sum_{t \in P} \mu(x, t) \delta(J(t), y). \]

Without loss of generality, we assume \(x = 0 \) in \(P \). For each element \(y \in Q \), let

\[a(y) = \sum_{t \in P} \mu(0, t) \delta(J(t), y) \zeta(t, y). \]

Then

\[a(y) \zeta(y, z) = \sum_{t, y \in P} \mu(0, t) \delta(J(t), y) \zeta(y, z) = \sum_{t \in P} \mu(0, t) \zeta(t, z) = \delta_P(0, z). \]

If \(0 < J(0) \), \(\delta_P(0, z) = 0 \) for all \(z \in Q \), and \(a(y) = 0 \) for all \(y \in Q \). If \(0 = J(0) \), \(\delta_P(0, z) = 1 \) for \(z = 0 \), and \(a(y) = \mu_Q(0, y) \).

Given a function \(f \) from a finite lattice \(P \) into a ring with unit, associate the difference operators \(D, E \)

lower difference \[Df(x) = \sum_{y \leq x} \mu(y, x) \]
upper difference \[Ef(x) = \sum_{y : x \leq y} \mu(x, y) f(y). \]

Theorem 2 (Analogue of integration by parts). If \(f, g \) are functions from a finite lattice \(P \) into a ring, then

\[\sum_{x \in P} Df(x) g(x) = \sum_{x \in P} f(x) Eg(x). \]

Proof. Both are equal to \(\sum_{x, y} f(x) \mu(x, y) g(y) \).

It is interesting to compare the proof of theorem 2 with the argument that cycles and coboundaries in a graph are orthogonal to one another. For each vertex \(p \) and edge \(x \), let

\[\epsilon(p, x) = \begin{cases} \pm 1 & \text{if } p \text{ is the head of } x, \\ -1 & \text{if } p \text{ is the tail of } x, \\ 0 & \text{otherwise}. \end{cases} \]

Boundary and coboundary operators are defined by

\[\partial f(p) = \sum_{x \in P} \epsilon(p, x) f(x) \]
\[\delta g(x) = \sum_{p} g(p) \epsilon(p, x) \]

If \(f \) is a 1-cycle \((\partial f = 0) \) and \(h \) is a 1-coboundary \((h = \delta g) \), then

\[\sum_x f(x) h(x) = \sum_x f(x) \epsilon(p, x) g(p) = \sum_p \partial f(p) g(p) = \sum_p 0 g(p) = 0. \]

If \(\sigma : P \rightarrow L \) is a supremum-homomorphism from a complete lattice \(P \) into a complete lattice \(L \), then \(\sigma^4 : L \rightarrow P \) is an infimum-homomorphism, defined by

\[\sigma^4(y) = \sup \{ x; \sigma(x) \leq y \}. \]

The pair \(\sigma, \sigma^4 \) is a Galois connection, in the sense that \(P/\sigma^4(\sigma) \) is isomorphic to \(L/\sigma(\sigma^4) \), where \(\sigma^4(\sigma) \) is a closure operator on \(P \) and \(\sigma(\sigma^4) \) is a coclosure operator on \(L \). All Galois connections between complete lattices arise in this fashion. In the special case where \(\sigma \) is onto \(L \), \(P/\sigma^4(\sigma) \cong L \).