A VISCOELASTIC DESCRIPTION OF THE GLASS TRANSITION-CONVERSION RELATIONSHIP FOR REACTIVE POLYMERS

S. Gan, J. C. Seferis* and R. B. Prime**

POLYMERIC COMPOSITES LABORATORY DEPARTMENT OF CHEMICAL ENGINEERING, BF-10 UNIVERSITY OF WASHINGTON SEATTLE, WA 98195;
**IBM GENERAL PRODUCTS DIVISION 5600 COTTLE ROAD SAN JOSE, CA 95193 U.S.A.

(Received September 11, 1990)

The glass transition temperature, T_g, is a sensitive and practical parameter for following cure of reactive thermosetting systems. A new equation was developed for predicting the T_g-conversion relationship based on the Dillman-Seferis viscoelastic compliance model. It assumes that the changes in T_g are primarily due to changes in relaxation time as chain extension and crosslinking reduce the mobility of a polymer network. Such information is essential in combining kinetic and viscoelastic measurements, which monitor transformations of thermosets during cure. The equation derived from the viscoelastic model was shown to be applicable for a variety of experimental data. The success of the methodology was further demonstrated by comparing well-established relations, such as the Fox equation and the Di-Benedetto equation, to predictions made possible by adjusting two viscoelastic model parameters. Finally, the fitting power of the proposed equation was shown by fitting published epoxy data from the literature as well as experimental data on a relatively new resin system such as dicyanates used as a model in this study.

The glass transition temperature, T_g, is a sensitive and practical parameter for following the cure of reactive thermosetting systems. First, T_g sets an upper bound for use temperature of a polymer. Second, a wide range of values of T_g is encountered during cure and many important events can be characterized in terms of T_g [1, 2]. The molecular state of the unreacted material is also characterized by T_g as T_{g0}, as well that of the fully reacted material by $T_{g\infty}$ as T_g. A quantitative relationship between T_g and extent of

* To whom correspondence should be addressed
conversion can provide a critical link in the description of the cure process [3].

It is well established that chain extension and crosslinking increase the T_g of a polymer. However, for most systems, the T_g is also strongly dependent on the chemical composition and phase morphologies complicating the expected behavior. Currently, there are several equations describing T_g in terms of crosslink density or extent of conversion. The Fox and Loshack equation predicts linearity of T_g as a function of crosslink density [4]. The DiMarzio equation predicts linearity of $1/T_g$ with crosslink density [5]. Also, the widely utilized DiBenedetto equation which accounts for the effects of both copolymer and crosslink density provides a generalized expression for T_g [6]. These equations, derived primarily on a thermodynamic basis, are applicable for homogeneous systems and often fail to fit experimental data at high conversion. One example is the sharp increase in T_g at higher degrees of conversion for very high crosslink density systems [7].

In this work, a methodology, based on viscoelastic modelling of the cure process, has been developed that is capable of quantitatively describing both isothermal and non-isothermal dynamic mechanical behavior of a reactive epoxy system in the vicinity of its primary viscoelastic transition [8, 9]. The present work shows that it is possible to develop a quantitative T_g - Conversion relationship based on viscoelastic modelling of reactive systems. Thus, it is possible to relate changes in glass transition to changes in relaxation time of the system as chain extension and crosslinking reduce the mobility of the polymer network. The success of the new viscoelastic approach was demonstrated by comparison with experimental results generated specifically for this study as well as with previously published experimental data. Furthermore, by direct comparison of these expressions to well accepted equations used for T_g-conversion, the generality of the viscoelastic approach was established.

Background

It is well known that conversion or crosslinking increases the glass transition temperature of a polymer. Thus, an increase in T_g may be viewed as two nearly independent effects: (1) the degree of crosslinking and (2) the copolymer effect. A number of studies has been published relating the degree of crosslinking to the shift in T_g of a polymer [4-6]. However, there is lack of agreement between investigators. For example, the Fox-Loshack expression provided the linear relationship [4], viz.

J. Thermal Anal., 37, 1991